메뉴 건너뛰기




Volumn 94, Issue 3, 2005, Pages 265-272

Improvement of breast cancer relapse prediction in high risk intervals using artificial neural networks

Author keywords

Breast cancer prognosis; Cox proportional hazard model; High peaks of relapse; Neural networks; Survival analysis

Indexed keywords

ACCURACY; ADULT; AGED; ARTICLE; ARTIFICIAL NEURAL NETWORK; BREAST CANCER; CANCER RELAPSE; CONTROLLED STUDY; FEMALE; FOLLOW UP; HUMAN; LYMPH NODE; MAJOR CLINICAL STUDY; PREDICTION; PRIORITY JOURNAL; PROGNOSIS; RISK ASSESSMENT; SPAIN; STATISTICAL ANALYSIS; STATISTICAL SIGNIFICANCE; SURVIVAL; TUMOR VOLUME;

EID: 27944509655     PISSN: 01676806     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10549-005-9013-y     Document Type: Article
Times cited : (55)

References (39)
  • 1
    • 0032443067 scopus 로고    scopus 로고
    • Time-dependence of hazard ratios for prognostic factors in primary breast cancer
    • Hilsenbeck SG, Ravdin PM, de Moor CA: Time-dependence of hazard ratios for prognostic factors in primary breast cancer. Breast Cancer Res Treat 52: 227-237, 1998
    • (1998) Breast Cancer Res Treat , vol.52 , pp. 227-237
    • Hilsenbeck, S.G.1    Ravdin, P.M.2    De Moor, C.A.3
  • 2
    • 0000336139 scopus 로고
    • Regression models and life tables
    • Cox DR: Regression models and life tables. J R Stat Soc 34: 187-202, 1972
    • (1972) J R Stat Soc , vol.34 , pp. 187-202
    • Cox, D.R.1
  • 3
    • 0030938915 scopus 로고    scopus 로고
    • A comparison of Cox proportional hazards and artificial neural network models for medical prognosis
    • Ohno-Machado : A comparison of Cox proportional hazards and artificial neural network models for medical prognosis. Comput Biol Med 27: 55-65, 1997
    • (1997) Comput Biol Med , vol.27 , pp. 55-65
    • Ohno-Machado1
  • 4
    • 0034726204 scopus 로고    scopus 로고
    • Comparison of the performance of neural network methods and Cox regression for censored survival data
    • Xiang A, Lapuerta P, Ryutov A, Buckley J, Azen S: Comparison of the performance of neural network methods and Cox regression for censored survival data. Comput Stat and Data Anal 34: 243-257, 2000
    • (2000) Comput Stat and Data Anal , vol.34 , pp. 243-257
    • Xiang, A.1    Lapuerta, P.2    Ryutov, A.3    Buckley, J.4    Azen, S.5
  • 6
    • 0031233464 scopus 로고    scopus 로고
    • On the use of artificial neural networks for the analysis of survival data
    • Brown SF, Branford AJ, Moran W: On the use of artificial neural networks for the analysis of survival data. IEEE Trans Neural Networks 8: 1071-1077, 1997
    • (1997) IEEE Trans Neural Networks , vol.8 , pp. 1071-1077
    • Brown, S.F.1    Branford, A.J.2    Moran, W.3
  • 7
    • 0031487090 scopus 로고    scopus 로고
    • Bayesian neural network models for censored data
    • Faraggi D, Simon R, Yaskil E, Kramar A: Bayesian neural network models for censored data. Biometrica J 5: 519-532, 1997
    • (1997) Biometrica J , vol.5 , pp. 519-532
    • Faraggi, D.1    Simon, R.2    Yaskil, E.3    Kramar, A.4
  • 10
    • 1842856149 scopus 로고    scopus 로고
    • A combined neural network and decision trees model for prognosis of breast cancer relapse
    • Jerez JM, Gómez JA, Ramos G, Muñoz J, Alba E: A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med 27: 45-63, 2003
    • (2003) Artif Intell Med , vol.27 , pp. 45-63
    • Jerez, J.M.1    Gómez, J.A.2    Ramos, G.3    Muñoz, J.4    Alba, E.5
  • 12
    • 0028328448 scopus 로고
    • A technique for using neural network analysis to perform survival analysis of censored data
    • De Laurentis M, Ravdin PM: A technique for using neural network analysis to perform survival analysis of censored data. Cancer Lett 77: 127-138, 1994
    • (1994) Cancer Lett , vol.77 , pp. 127-138
    • De Laurentis, M.1    Ravdin, P.M.2
  • 13
    • 0033375308 scopus 로고    scopus 로고
    • A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients
    • De Laurentiis M, De Placido S, Bianco AR, Clark GM, Ravdin PM: A prognostic model that makes quantitative estimates of probability of relapse for breast cancer patients. Clin Cancer Res 5: 4133-4139, 1999
    • (1999) Clin Cancer Res , vol.5 , pp. 4133-4139
    • De Laurentiis, M.1    De Placido, S.2    Bianco, A.R.3    Clark, G.M.4    Ravdin, P.M.5
  • 14
    • 0035977415 scopus 로고    scopus 로고
    • Modelling cause-specific hazards with radial basis function artificial neural networks: Application to 2233 breast cancer patients
    • Boracchi P, Biganzoli E, Marubini E: Modelling cause-specific hazards with radial basis function artificial neural networks: application to 2233 breast cancer patients. Stat Med 20: 3677-3694, 2001
    • (2001) Stat Med , vol.20 , pp. 3677-3694
    • Boracchi, P.1    Biganzoli, E.2    Marubini, E.3
  • 15
    • 0037114493 scopus 로고    scopus 로고
    • Updating of covariates and choice of time origin in survival analysis: Problems with vaguely defined disease states
    • Liestol K, Andersen PK: Updating of covariates and choice of time origin in survival analysis: problems with vaguely defined disease states. Stat Med 21: 3701-3714, 2002
    • (2002) Stat Med , vol.21 , pp. 3701-3714
    • Liestol, K.1    Andersen, P.K.2
  • 16
    • 0142216643 scopus 로고    scopus 로고
    • Prognosis in node-negative primary breast cancer: A neural network analysis of risk profiles using routinely assessed factors
    • Biganzoli E, Boracchi P, Coradini D, Daidone MG, Marubini E: Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors. Ann Oncol 14: 1484-1493, 2003
    • (2003) Ann Oncol , vol.14 , pp. 1484-1493
    • Biganzoli, E.1    Boracchi, P.2    Coradini, D.3    Daidone, M.G.4    Marubini, E.5
  • 17
    • 0031921607 scopus 로고    scopus 로고
    • Feed forward neural networks for the analysis of censored survival data: A partial logistic regression approach
    • Biganzoli E, Boracchi P, Mariani L, Marubini E: Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 17: 1169-1186, 1998
    • (1998) Stat Med , vol.17 , pp. 1169-1186
    • Biganzoli, E.1    Boracchi, P.2    Mariani, L.3    Marubini, E.4
  • 18
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • Dreiseitl S, Ohno-Machado L: Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inf 35: 352-359, 2002
    • (2002) J Biomed Inf , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 20
    • 0345963033 scopus 로고    scopus 로고
    • Factors influencing the effect of age on prognosis in breast cancer: Population based study
    • Kroman N, Jensen MB, Wohlfahrt J, Mouridsen HT, Andersen PK, Melbye M: Factors influencing the effect of age on prognosis in breast cancer: population based study. BMJ 320: 474-478, 2000
    • (2000) BMJ , vol.320 , pp. 474-478
    • Kroman, N.1    Jensen, M.B.2    Wohlfahrt, J.3    Mouridsen, H.T.4    Andersen, P.K.5    Melbye, M.6
  • 24
    • 0015980662 scopus 로고
    • Covariance analysis of censored survival data
    • Breslow NE: Covariance analysis of censored survival data. Biometrics 30: 89-99, 1974
    • (1974) Biometrics , vol.30 , pp. 89-99
    • Breslow, N.E.1
  • 28
    • 0020083498 scopus 로고
    • The meaning and use of the area under the receiver operating characteristic (ROC) curve
    • Hanley J, Mc Neil B: The meaning and use of the area under the receiver operating characteristic (ROC) curve. Radiology 143: 29-36, 1982
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.1    Mc Neil, B.2
  • 29
    • 0020524559 scopus 로고
    • A method for comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley JA, McNeil BJ: A method for comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148: 839-843, 1983
    • (1983) Radiology , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 30
    • 0141841812 scopus 로고    scopus 로고
    • Survival Analysis Part IV: Further concepts and methods in survival analysis
    • Clark TG, Bradburn MJ, Love SB, Altman DG: Survival Analysis Part IV: Further concepts and methods in survival analysis. Br J Cancer 89: 781-786, 2003
    • (2003) Br J Cancer , vol.89 , pp. 781-786
    • Clark, T.G.1    Bradburn, M.J.2    Love, S.B.3    Altman, D.G.4
  • 32
    • 0034732869 scopus 로고    scopus 로고
    • Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
    • Greiner M, Pfeiffer D, Smith RD: Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45: 23-41, 2000
    • (2000) Prev Vet Med , vol.45 , pp. 23-41
    • Greiner, M.1    Pfeiffer, D.2    Smith, R.D.3
  • 33
    • 0029851451 scopus 로고    scopus 로고
    • Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: Further support about the concept of tumor dormancy
    • Demicheli R, Abbattista A, Miceli R, Valagussa P, Bonadonna G: Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat 41: 177-185, 1996
    • (1996) Breast Cancer Res Treat , vol.41 , pp. 177-185
    • Demicheli, R.1    Abbattista, A.2    Miceli, R.3    Valagussa, P.4    Bonadonna, G.5
  • 34
    • 0029759541 scopus 로고    scopus 로고
    • Annual hazard rates of recurrence for breast cancer after primary therapy
    • Saphner T, Tormey DC, Gray R: Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 14: 2738-2746, 1996
    • (1996) J Clin Oncol , vol.14 , pp. 2738-2746
    • Saphner, T.1    Tormey, D.C.2    Gray, R.3
  • 36
    • 0023638178 scopus 로고
    • Prospective computerized simulation of breast cancer: Comparison of computer predictions with nine sets of biological and clinical data
    • Retsky MW, Wardwell RH, Swartzendruber DE, Headley DL: Prospective computerized simulation of breast cancer: comparison of computer predictions with nine sets of biological and clinical data. Cancer Res 47: 4982-4987, 1987
    • (1987) Cancer Res , vol.47 , pp. 4982-4987
    • Retsky, M.W.1    Wardwell, R.H.2    Swartzendruber, D.E.3    Headley, D.L.4
  • 37
    • 0035902803 scopus 로고    scopus 로고
    • Does surgery modify growth kinetics of breast cancer micrometastases?
    • Demicheli R, Valagussa P, Bonadonna G: Does surgery modify growth kinetics of breast cancer micrometastases?. Br J Cancer 85: 490-492, 2001
    • (2001) Br J Cancer , vol.85 , pp. 490-492
    • Demicheli, R.1    Valagussa, P.2    Bonadonna, G.3
  • 38
    • 84961056499 scopus 로고
    • Natural history of untreated breast cancer (1905-1933)
    • Bloom HJG, Richardson WW, Harries EJ: Natural history of untreated breast cancer (1905-1933). BMJ 2: 213-221, 1962
    • (1962) BMJ , vol.2 , pp. 213-221
    • Bloom, H.J.G.1    Richardson, W.W.2    Harries, E.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.