메뉴 건너뛰기




Volumn 2, Issue 4, 2006, Pages 965-980

Covalency in highly polar bonds. Structure and bonding of methylalkalimetal oligomers (CH3M)n (M = Li-Rb; n = 1, 4)

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33845889241     PISSN: 15499618     EISSN: None     Source Type: Journal    
DOI: 10.1021/ct050333s     Document Type: Article
Times cited : (44)

References (85)
  • 1
    • 0004233970 scopus 로고    scopus 로고
    • See, for example: a, 3rd ed, Wiley-VCH: Weinheim: Germany
    • See, for example: (a) Elschenbroich, Ch. Organometallics, 3rd ed.; Wiley-VCH: Weinheim: Germany, 2006.
    • (2006) Organometallics
    • Elschenbroich, C.1
  • 30
    • 0034679094 scopus 로고    scopus 로고
    • Experimental structures of methyl alkalimetal monomers: (a) Grotjahn, D. B.; Pesch, T. C.; Brewster, M. A.; Ziurys, L. M. J. Am. Chem. Soc. 2000, 122, 4735.
    • Experimental structures of methyl alkalimetal monomers: (a) Grotjahn, D. B.; Pesch, T. C.; Brewster, M. A.; Ziurys, L. M. J. Am. Chem. Soc. 2000, 122, 4735.
  • 34
    • 84984293479 scopus 로고    scopus 로고
    • Experimental structures of methyl alkalimetal tetramers: (a) Weiss, E.; Lambertsen, T.; Schubert, B.; Cockcroft, J. K.; Wiedenmann, A. Chem. Ber. 1990, 123, 79.
    • Experimental structures of methyl alkalimetal tetramers: (a) Weiss, E.; Lambertsen, T.; Schubert, B.; Cockcroft, J. K.; Wiedenmann, A. Chem. Ber. 1990, 123, 79.
  • 42
    • 0004238947 scopus 로고
    • Wiley-Interscience: New York
    • (c) Bauer, W. Lithium Chemistry; Wiley-Interscience: New York, 1995.
    • (1995) Lithium Chemistry
    • Bauer, W.1
  • 47
    • 0034373424 scopus 로고    scopus 로고
    • Lipkowitz, K. B, Boyd, D. B, Eds, Wiley-VCH: New York
    • Bickelhaupt, F. M.; Baerends, E. J. In Rev. Comput. Chem.; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH: New York, 2000; Vol. 15, pp 1-86.
    • (2000) Rev. Comput. Chem , vol.15 , pp. 1-86
    • Bickelhaupt, F.M.1    Baerends, E.J.2
  • 61
    • 4043083704 scopus 로고    scopus 로고
    • (Erratum: Phys. Rev. B 1986, 34, 7406).
    • (Erratum: Phys. Rev. B 1986, 34, 7406).
  • 63
  • 69
    • 33846264719 scopus 로고    scopus 로고
    • The Voronoi deformation density (VDD) method was introduced in ref 5. See also: (a) ref 9.
    • The Voronoi deformation density (VDD) method was introduced in ref 5. See also: (a) ref 9.
  • 71
    • 0003406742 scopus 로고
    • Voronoi cells are equivalent to Wigner-Seitz cells in crystals; for the latter, see: c, Wiley: New York
    • Voronoi cells are equivalent to Wigner-Seitz cells in crystals; for the latter, see: (c) Kittel, C. Introduction to Solid State Physics; Wiley: New York, 1986.
    • (1986) Introduction to Solid State Physics
    • Kittel, C.1
  • 73
    • 33846263861 scopus 로고    scopus 로고
    • homo of -45.7, -31.1, -27.2, and -24.6 kcal/mol along M = Li, Na, K, and Rb.
    • homo of -45.7, -31.1, -27.2, and -24.6 kcal/mol along M = Li, Na, K, and Rb.
  • 74
    • 33846203560 scopus 로고    scopus 로고
    • The description of the MO in terms of fragment MO coefficients instead of Gross Mulliken contributions yields the same picture, but it has the disadvantage of not being normalized, that is, the figures do not add up to 1 (or to 100%). Note that diffuse fragment MOs (often at higher energy) can make unphysical negative Gross Mulliken contributions, which are then compensated by positive Gross Mulliken contributions that exceed 100%. This problem occurs in a slight form also in our systems in which the sum of the main positive Gross Mulliken contributions to the C-M electron-pair bonding combination are in some cases 101%-103% (M = Li and Na in Figures 3 and 4).
    • The description of the MO in terms of fragment MO coefficients instead of Gross Mulliken contributions yields the same picture, but it has the disadvantage of not being normalized, that is, the figures do not add up to 1 (or to 100%). Note that diffuse fragment MOs (often at higher energy) can make unphysical negative Gross Mulliken contributions, which are then compensated by positive Gross Mulliken contributions that exceed 100%. This problem occurs in a slight form also in our systems in which the sum of the main positive Gross Mulliken contributions to the C-M electron-pair bonding combination are in some cases 101%-103% (M = Li and Na in Figures 3 and 4).
  • 77
    • 0037138646 scopus 로고    scopus 로고
    • The C-M bond distance also increases along Li-Rb because of the increasing number of metal core shells that enter into Pauli repulsion with closed shells on the methyl fragment. For a discussion on how the interplay of bonding andrepulsive orbital interactions determines bond lengths, see, for example: Bickelhaupt, F. M, DeKock, R. L, Baerends, E. J. J. Am. Chem. Soc. 2002, 124, 1500
    • The C-M bond distance also increases along Li-Rb because of the increasing number of metal core shells that enter into Pauli repulsion with closed shells on the methyl fragment. For a discussion on how the interplay of bonding andrepulsive orbital interactions determines bond lengths, see, for example: Bickelhaupt, F. M.; DeKock, R. L.; Baerends, E. J. J. Am. Chem. Soc. 2002, 124, 1500.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.