-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauer E., and Cohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learning 36 1-2 (1999) 105-139
-
(1999)
Mach. Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Cohavi, R.2
-
2
-
-
33751017157
-
-
Blake, C., Merz, C., 1998. UCI repository of machine learning databases. 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
-
-
-
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0003802343
-
-
Wadsworth, Belmont CA
-
Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression Trees (1984), Wadsworth, Belmont CA
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
5
-
-
23044533892
-
Highlighting hard patterns via Adaboost weights evolution
-
Kittler J., and Roli F. (Eds), Springer, Berlin
-
Caprile B., Furlanello C., and Merler S. Highlighting hard patterns via Adaboost weights evolution. In: Kittler J., and Roli F. (Eds). Multiple Classifier Systems, Lecture Notes in Computer Science vol. 2364 (2002), Springer, Berlin 72-80
-
(2002)
Multiple Classifier Systems, Lecture Notes in Computer Science
, vol.2364
, pp. 72-80
-
-
Caprile, B.1
Furlanello, C.2
Merler, S.3
-
6
-
-
0036643072
-
Logistic regression, adaboost and bregman distances
-
Collins M., Schapire R.E., and Singer Y. Logistic regression, adaboost and bregman distances. Mach. Learning 48 1-3 (2002) 253-285
-
(2002)
Mach. Learning
, vol.48
, Issue.1-3
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
7
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
-
Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learning 40 2 (2000) 139-157
-
(2000)
Mach. Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.1
-
9
-
-
0031211090
-
A decision-theoretic generalization of online learning and an application to boosting
-
Freund Y., and Schapire R.E. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. System Sci. 55 1 (1997) 119-139
-
(1997)
J. Comput. System Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
10
-
-
0034164230
-
-
Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 (2), 337-407.
-
-
-
-
11
-
-
33751016858
-
-
Kontoghiorghes, E.J. (Ed.), 1999. Parallel processing and statistics. Special Issue of the Journal Computational Statistics & Data Analysis, vol. 31(4). Elsevier, Amsterdam.
-
-
-
-
13
-
-
85057381067
-
-
Kontoghiorghes, E.J. (Ed.), 2005. Handbook of parallel computing and statistics. Statistics: Textbooks and Monograph Series, vol. 184. Marcel Dekker Inc., New York.
-
-
-
-
14
-
-
0036495711
-
Boosting algorithms for parallel and distributed learning
-
Lazarevic A., and Obradovic Z. Boosting algorithms for parallel and distributed learning. Distrib. and Parallel Databases 11 2 (2002) 203-229
-
(2002)
Distrib. and Parallel Databases
, vol.11
, Issue.2
, pp. 203-229
-
-
Lazarevic, A.1
Obradovic, Z.2
-
16
-
-
84898978212
-
Boosting algorithms as gradient descent
-
MIT Press, Cambridge, MA
-
Mason L., Baxter J., Bartlett P., and Frean M. Boosting algorithms as gradient descent. Advances in Neural Information Processing Systems, vol. 12 (2000), MIT Press, Cambridge, MA 512-518
-
(2000)
Advances in Neural Information Processing Systems, vol. 12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
17
-
-
0030370417
-
Bagging, boosting, and C4.5
-
AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA
-
Quinlan J. Bagging, boosting, and C4.5. Thirteenth National Conference on Artificial Intelligence (1996), AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA 163-175
-
(1996)
Thirteenth National Conference on Artificial Intelligence
, pp. 163-175
-
-
Quinlan, J.1
-
19
-
-
47849088969
-
The dynamics of AdaBoost: cyclic behavior and convergence of margins
-
Rudin C., Daubechies I., and Schapire R. The dynamics of AdaBoost: cyclic behavior and convergence of margins. J. Mach. Learning Res. 5 (2004) 1557-1595
-
(2004)
J. Mach. Learning Res.
, vol.5
, pp. 1557-1595
-
-
Rudin, C.1
Daubechies, I.2
Schapire, R.3
-
20
-
-
33750983085
-
-
Schapire, R.E., 2002. The boosting approach to machine learning: an overview. In: MSRI Workshop on Nonlinear Estimation and Classification.
-
-
-
-
21
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire R.E., Freund Y., Bartlett P., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26 5 (1998) 1651-1686
-
(1998)
Ann. Statist.
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
22
-
-
0034247206
-
Multiboosting: a technique for combining boosting and wagging
-
Webb G. Multiboosting: a technique for combining boosting and wagging. Mach. Learning 40 3 (2000) 159-196
-
(2000)
Mach. Learning
, vol.40
, Issue.3
, pp. 159-196
-
-
Webb, G.1
-
23
-
-
33750971202
-
-
Yu, C., Skillicorn, D.B., 2001. Parallelizing boosting and bagging. Technical Report, Department of Computing and Information Sciences, Queen's University Kingston, Canada.
-
-
-
|