메뉴 건너뛰기




Volumn 51, Issue 5, 2007, Pages 2487-2498

Parallelizing AdaBoost by weights dynamics

Author keywords

AdaBoost; Boosting; Classification; Parallelization; Weights dynamics

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTATIONAL METHODS; DATA REDUCTION; DATABASE SYSTEMS; MATHEMATICAL MODELS; RANDOM PROCESSES;

EID: 33751014821     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.09.001     Document Type: Article
Times cited : (38)

References (23)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., and Cohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learning 36 1-2 (1999) 105-139
    • (1999) Mach. Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Cohavi, R.2
  • 2
    • 33751017157 scopus 로고    scopus 로고
    • Blake, C., Merz, C., 1998. UCI repository of machine learning databases. 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
  • 6
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, adaboost and bregman distances
    • Collins M., Schapire R.E., and Singer Y. Logistic regression, adaboost and bregman distances. Mach. Learning 48 1-3 (2002) 253-285
    • (2002) Mach. Learning , vol.48 , Issue.1-3 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 7
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learning 40 2 (2000) 139-157
    • (2000) Mach. Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. System Sci. 55 1 (1997) 119-139
    • (1997) J. Comput. System Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 10
    • 0034164230 scopus 로고    scopus 로고
    • Friedman, J., Hastie, T., Tibshirani, R., 2000. Additive logistic regression: a statistical view of boosting. Ann. Statist. 28 (2), 337-407.
  • 11
    • 33751016858 scopus 로고    scopus 로고
    • Kontoghiorghes, E.J. (Ed.), 1999. Parallel processing and statistics. Special Issue of the Journal Computational Statistics & Data Analysis, vol. 31(4). Elsevier, Amsterdam.
  • 13
    • 85057381067 scopus 로고    scopus 로고
    • Kontoghiorghes, E.J. (Ed.), 2005. Handbook of parallel computing and statistics. Statistics: Textbooks and Monograph Series, vol. 184. Marcel Dekker Inc., New York.
  • 14
    • 0036495711 scopus 로고    scopus 로고
    • Boosting algorithms for parallel and distributed learning
    • Lazarevic A., and Obradovic Z. Boosting algorithms for parallel and distributed learning. Distrib. and Parallel Databases 11 2 (2002) 203-229
    • (2002) Distrib. and Parallel Databases , vol.11 , Issue.2 , pp. 203-229
    • Lazarevic, A.1    Obradovic, Z.2
  • 17
    • 0030370417 scopus 로고    scopus 로고
    • Bagging, boosting, and C4.5
    • AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA
    • Quinlan J. Bagging, boosting, and C4.5. Thirteenth National Conference on Artificial Intelligence (1996), AAAI Press, MIT Press, Menlo Park, CA, Cambridge, MA 163-175
    • (1996) Thirteenth National Conference on Artificial Intelligence , pp. 163-175
    • Quinlan, J.1
  • 19
    • 47849088969 scopus 로고    scopus 로고
    • The dynamics of AdaBoost: cyclic behavior and convergence of margins
    • Rudin C., Daubechies I., and Schapire R. The dynamics of AdaBoost: cyclic behavior and convergence of margins. J. Mach. Learning Res. 5 (2004) 1557-1595
    • (2004) J. Mach. Learning Res. , vol.5 , pp. 1557-1595
    • Rudin, C.1    Daubechies, I.2    Schapire, R.3
  • 20
    • 33750983085 scopus 로고    scopus 로고
    • Schapire, R.E., 2002. The boosting approach to machine learning: an overview. In: MSRI Workshop on Nonlinear Estimation and Classification.
  • 21
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: a new explanation for the effectiveness of voting methods
    • Schapire R.E., Freund Y., Bartlett P., and Lee W.S. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26 5 (1998) 1651-1686
    • (1998) Ann. Statist. , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 22
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb G. Multiboosting: a technique for combining boosting and wagging. Mach. Learning 40 3 (2000) 159-196
    • (2000) Mach. Learning , vol.40 , Issue.3 , pp. 159-196
    • Webb, G.1
  • 23
    • 33750971202 scopus 로고    scopus 로고
    • Yu, C., Skillicorn, D.B., 2001. Parallelizing boosting and bagging. Technical Report, Department of Computing and Information Sciences, Queen's University Kingston, Canada.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.