메뉴 건너뛰기




Volumn 2364, Issue , 2002, Pages 72-80

Highlighting hard patterns via adaboost weights evolution

Author keywords

[No Author keywords available]

Indexed keywords

ENTROPY;

EID: 23044533892     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45428-4_7     Document Type: Conference Paper
Times cited : (5)

References (14)
  • 1
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-theoretic Generalization of Online Learning and an Application to Boosting
    • [1] Y. Freund and R. E. Schapire, “A Decision-theoretic Generalization of Online Learning and an Application to Boosting,” Journal of Computer and System Sciences, vol. 55, pp. 119–139, August 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 2
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
    • [2] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods,” The Annals of Statistics, vol. 26, no. 5, pp. 1651–1686, 1998.
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • [6] T. G. Dietterich, “An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization,” Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 0031638384 scopus 로고    scopus 로고
    • Boosting in the limit: Maximizing the margin of learned ensembles
    • [7] A. J. Grove and D. Schuurmans, “Boosting in the limit: Maximizing the margin of learned ensembles,” in AAAI/IAAI, pp. 692–699, 1998.
    • (1998) AAAI/IAAI , pp. 692-699
    • Grove, A.J.1    Schuurmans, D.2
  • 8
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for Adaboost
    • [8] G. Rätsch, T. Onoda, and K. Müller, “Soft margins for Adaboost,” Machine Learning, vol. 42, pp. 287–320, 2001.
    • (2001) Machine Learning , vol.42 , pp. 287-320
    • Rätsch, G.1    Onoda, T.2    Müller, K.3
  • 9
    • 0003450542 scopus 로고    scopus 로고
    • Statistics for Engineering and Information Science, Springer Verlag
    • [9] V. Vapnik, The nature of statistical learning theory. Statistics for Engineering and Information Science, Springer Verlag, 2000.
    • (2000) The Nature of Statistical Learning Theory
    • Vapnik, V.1
  • 11
    • 0003428336 scopus 로고
    • of, Econometric Society Monographs, . Cambridge University Press
    • [11] W. Härdle, Applied Nonparametric Regression, vol. 19 of Econometric Society Monographs. Cambridge University Press, 1990.
    • (1990) Applied Nonparametric Regression , vol.19
    • Härdle, W.1
  • 13
    • 85124125604 scopus 로고
    • Heterogeneous Uncertainty Sampling for Supervised Learning
    • (Cohen and Hirsh, eds.), (San Francisco, Morgan Kaufmann
    • [13] D. D. Lewis and J. Catlett, “Heterogeneous Uncertainty Sampling for Supervised Learning,” in Eleventh International Conference on Machine Learning (Cohen and Hirsh, eds.), (San Francisco), pp. 148–156, Morgan Kaufmann, 1994.
    • (1994) Eleventh International Conference on Machine Learning , pp. 148-156
    • Lewis, D.D.1    Catlett, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.