-
1
-
-
84957477993
-
An application of interference microscopy to integrated circuit inspection and metrology
-
Integrated circuit metrology, inspection and process control
-
M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, "An Application of Interference Microscopy to Integrated Circuit Inspection and Metrology", Proceedings SPIE 775, Integrated circuit metrology, inspection and process control, 233-247 (1987).
-
(1987)
Proceedings SPIE
, vol.775
, pp. 233-247
-
-
Davidson, M.1
Kaufman, K.2
Mazor, I.3
Cohen, F.4
-
2
-
-
84955326631
-
Mirau correlation microscope
-
G. S. Kino and S. S. C. Chim, "Mirau correlation microscope," Appl. Opt. 29(26), 3775-3783 (1990).
-
(1990)
Appl. Opt.
, vol.29
, Issue.26
, pp. 3775-3783
-
-
Kino, G.S.1
Chim, S.S.C.2
-
3
-
-
33749683074
-
-
"Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms," U.S. patent 5,398,113,14 Mar.
-
P. de Groot, "Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms," U.S. patent 5,398,113,14 Mar. 1995.
-
(1995)
-
-
De Groot, P.1
-
4
-
-
4544294406
-
Signal modeling for low-coherence height-scanning interference microscopy
-
Peter de Groot, Xavier Colonna de Lega, "Signal Modeling for Low-Coherence Height-Scanning Interference Microscopy," Appl. Opt. 43(25), 4821-4830 (2004).
-
(2004)
Appl. Opt.
, vol.43
, Issue.25
, pp. 4821-4830
-
-
De Groot, P.1
De Lega, X.C.2
-
5
-
-
4544358654
-
Signal modeling for modern interference microscopes
-
P. de Groot and X. Colonna de Lega, "Signal modeling for modern interference microscopes," Proc. SPIE 5457, 26-34 (2004).
-
(2004)
Proc. SPIE
, vol.5457
, pp. 26-34
-
-
De Groot, P.1
De Colonna Lega, X.2
-
6
-
-
0003972070
-
-
Sections 1.5 and 1.6, Cambridge: Cambridge University Press
-
M. Born and E. Wolf, Sections 1.5 and 1.6, in Principles of Optics, 7th ed., Cambridge: Cambridge University Press, 1999, pp. 38-74.
-
(1999)
Principles of Optics, 7th Ed.
, pp. 38-74
-
-
Born, M.1
Wolf, E.2
-
7
-
-
33749658713
-
-
"Method for measuring a thickness profile and a refractive index using white-light scanning interferometry and recording medium therefore," US Patent 6,545,763B1 Apr. 8,2003
-
S. W. Kim and G. H. Kim, "Method for measuring a thickness profile and a refractive index using white-light scanning interferometry and recording medium therefore," US Patent 6,545,763B1 (Apr. 8,2003).
-
-
-
Kim, S.W.1
Kim, G.H.2
-
8
-
-
0000188027
-
Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry
-
S.-W. Kim and G.-H. Kim, "Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry," Appl. Opt. 38(28), 5968-5973 (1999).
-
(1999)
Appl. Opt.
, vol.38
, Issue.28
, pp. 5968-5973
-
-
Kim, S.-W.1
Kim, G.-H.2
-
9
-
-
33749652329
-
-
These classes of techniques are covered by published patent applications 20040085544 and 20040189999, assigned to Zygo Corporation.
-
These classes of techniques are covered by published patent applications 20040085544 and 20040189999, assigned to Zygo Corporation.
-
-
-
-
10
-
-
0000096595
-
Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation
-
C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83(6), 3323-3336 (1998).
-
(1998)
J. Appl. Phys.
, vol.83
, Issue.6
, pp. 3323-3336
-
-
Herzinger, C.M.1
Johs, B.2
McGahan, W.A.3
Woollam, J.A.4
Paulson, W.5
-
11
-
-
84940836520
-
Silicon nitride (noncrystalline)
-
edited by E. D. Palik, Academic Press
-
H. R. Philipp, "Silicon Nitride (Noncrystalline)," in Handbook of Optical Constants of Solids, edited by E. D. Palik, Academic Press, 1985, pp. 771-774.
-
(1985)
Handbook of Optical Constants of Solids
, pp. 771-774
-
-
Philipp, H.R.1
-
12
-
-
33749664019
-
-
note
-
4 can vary by as much as 0.02 at visible wavelengths.
-
-
-
|