메뉴 건너뛰기




Volumn 5, Issue 6, 1996, Pages 964-975

RBFN restoration of nonlinearly degraded images

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL METHODS; ELECTRIC DISTORTION; IMAGE PROCESSING; KALMAN FILTERING; LEARNING ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; SPURIOUS SIGNAL NOISE; STATISTICS;

EID: 0030165570     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/83.503912     Document Type: Article
Times cited : (46)

References (33)
  • 3
    • 0020115942 scopus 로고
    • A recursive Kalman window approach to image restoration
    • Apr.
    • S. S. Dikshit, "A recursive Kalman window approach to image restoration," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-30, pp. 125-129, Apr. 1982.
    • (1982) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-30 , pp. 125-129
    • Dikshit, S.S.1
  • 4
    • 0026124056 scopus 로고
    • Compound Gauss-Markov random fields for image estimation
    • F. Jeng and J. Woods, "Compound Gauss-Markov random fields for image estimation," IEEE Trans. Signal Processing, vol. 39, pp. 683-697, 1991.
    • (1991) IEEE Trans. Signal Processing , vol.39 , pp. 683-697
    • Jeng, F.1    Woods, J.2
  • 5
    • 0027624429 scopus 로고
    • A generalized Gaussian image model for edge-preserving MAP estimation
    • July
    • C. Bouman and K. Sauer, "A generalized Gaussian image model for edge-preserving MAP estimation," IEEE Trans. Image Processing, vol. 2, pp. 296-310, July 1993.
    • (1993) IEEE Trans. Image Processing , vol.2 , pp. 296-310
    • Bouman, C.1    Sauer, K.2
  • 6
    • 0026139576 scopus 로고
    • A study of methods of choosing the smoothing parameter in image restoration by regularization
    • A. M. Thompson, J. C. Brown, J. W. Kay, and D. M. Titterington, "A study of methods of choosing the smoothing parameter in image restoration by regularization," IEEE Trans. Pattern Anal. Machine Intell., vol. 13, no. 4, pp. 326-339, 1991.
    • (1991) IEEE Trans. Pattern Anal. Machine Intell. , vol.13 , Issue.4 , pp. 326-339
    • Thompson, A.M.1    Brown, J.C.2    Kay, J.W.3    Titterington, D.M.4
  • 8
    • 0022734994 scopus 로고
    • Non-linear order statistic filters for image filtering and edge detection
    • I. Pitas and A. N. Venetsanopoulus, "Non-linear order statistic filters for image filtering and edge detection," Signal Processing, vol. 10, pp. 395-413, 1986.
    • (1986) Signal Processing , vol.10 , pp. 395-413
    • Pitas, I.1    Venetsanopoulus, A.N.2
  • 9
    • 0026984885 scopus 로고
    • Order statistics in image processing
    • Dec.
    • _, "Order statistics in image processing," Proc. IEEE, vol. 80, pp. 1893-1921, Dec. 1992.
    • (1992) Proc. IEEE , vol.80 , pp. 1893-1921
  • 12
    • 0026679070 scopus 로고
    • Image restoration using a modified Hopfield network
    • Jan.
    • J. K. Paik and A. K. Katsaggelos, "Image restoration using a modified Hopfield network," IEEE Trans. Image Procesing, vol. 1, pp. 49-63, Jan. 1992.
    • (1992) IEEE Trans. Image Procesing , vol.1 , pp. 49-63
    • Paik, J.K.1    Katsaggelos, A.K.2
  • 13
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • J. C. Mason and M. G. Cox, Eds. Oxford, UK: Clarendon
    • M. J. D. Powell, "Radial basis functions for multivariable interpolation: A review," in Algorithms for Approximation, J. C. Mason and M. G. Cox, Eds. Oxford, UK: Clarendon, 1987, pp. 143-167.
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 14
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis function networks
    • J. Park and I. W. Sandberg, "Universal approximation using radial-basis function networks," Neural Computations, vol. 3, pp. 246-257, 1991.
    • (1991) Neural Computations , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.W.2
  • 15
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • Mar.
    • S. Chen, C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Networks, vol. 2, pp. 302-308, Mar. 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 302-308
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 16
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organizing learning
    • S. Lee and R. M. Kil, "A Gaussian potential function network with hierarchically self-organizing learning," Neural Networks, vol. 4, 1991, pp. 207-221.
    • (1991) Neural Networks , vol.4 , pp. 207-221
    • Lee, S.1    Kil, R.M.2
  • 17
    • 33747746017 scopus 로고
    • Minimal topology for radial basis function neural networks for pattern classificaion
    • July
    • A. G. Bors and M. Gabbouj, "Minimal topology for radial basis function neural networks for pattern classificaion," Digital Signal Processing, vol. 4, no. 3, July 1994.
    • (1994) Digital Signal Processing , vol.4 , Issue.3
    • Bors, A.G.1    Gabbouj, M.2
  • 18
    • 0027807482 scopus 로고
    • Radial basis function networks in nonlinear signal processing
    • Asilomar, CA, Nov.
    • S. A. Kassam and I. Cha, "Radial basis function networks in nonlinear signal processing," in Proc. 27th Annual Asilomar Conf. Signals, Syst., Comput., Asilomar, CA, Nov. 1993, vol. 1, p. 1022-1025.
    • (1993) Proc. 27th Annual Asilomar Conf. Signals, Syst., Comput. , vol.1 , pp. 1022-1025
    • Kassam, S.A.1    Cha, I.2
  • 19
    • 0029205963 scopus 로고
    • Channel equalization using adaptive complex radial basis function networks
    • Jan.
    • I. Cha and S. A. Kassam, "Channel equalization using adaptive complex radial basis function networks," IEEE J. Select. Areas Commun. (Special Issue), vol. 13, pp. 122-131, Jan. 1995.
    • (1995) IEEE J. Select. Areas Commun. , vol.13 , Issue.SPEC. ISSUE , pp. 122-131
    • Cha, I.1    Kassam, S.A.2
  • 20
    • 33747670458 scopus 로고
    • Interference cancellation using radial basis function networks
    • July
    • _, "Interference cancellation using radial basis function networks," in EURASIP Signal Processing, July 1995.
    • (1995) EURASIP Signal Processing
  • 21
    • 33747682460 scopus 로고
    • Gaussian-mixture basis function networks for nonlinear signal processing
    • June
    • _, "Gaussian-mixture basis function networks for nonlinear signal processing," in Proc. 1995 IEEE Workshop Nonlinear Signal Image Processing, vol. 1, June 1995, pp. 44-47.
    • (1995) Proc. 1995 IEEE Workshop Nonlinear Signal Image Processing , vol.1 , pp. 44-47
  • 24
    • 0027889429 scopus 로고
    • A closer look at the radial basis function (RBF) networks
    • Nov.
    • K. M. Tao, "A closer look at the radial basis function (RBF) networks," in 27th Asilomar Conf., vo. 1, pp. 401-405, Nov. 1993.
    • (1993) 27th Asilomar Conf. , vol.1 , pp. 401-405
    • Tao, K.M.1
  • 25
    • 0025550399 scopus 로고
    • Function approximation and time series prediction with neural networks
    • June
    • R. D. Jones, et. al, "Function approximation and time series prediction with neural networks,"in Proc. Int. Joint Conf. Neural Networks, June 1990, pp. 1649-666.
    • (1990) Proc. Int. Joint Conf. Neural Networks , pp. 1649-1666
    • Jones, R.D.1
  • 26
    • 0025957944 scopus 로고
    • Maximum likelihood neural networks for sensor fusion and adaptive classification
    • L. I. Perlovsky and M. M. McManus, "Maximum likelihood neural networks for sensor fusion and adaptive classification," Neural Networks, vol. 4, 1991, pp. 89-102.
    • (1991) Neural Networks , vol.4 , pp. 89-102
    • Perlovsky, L.I.1    McManus, M.M.2
  • 27
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural networks
    • Sept.
    • R. L. Streit and T. E. Luginbuhl, "Maximum likelihood training of probabilistic neural networks," IEEE Trans. Neural Networks, vol. 5, pp. 764-783, Sept. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 764-783
    • Streit, R.L.1    Luginbuhl, T.E.2
  • 29
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Apr.
    • R. A. Redner and H. F. Walker, "Mixture densities, maximum likelihood and the EM algorithm," SIAM Rev., vol. 26, pp. 195-239, Apr. 1984.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2
  • 30
    • 0022231252 scopus 로고
    • Second order Volterra filtering and its application to nonlinear system identification
    • T. Koh and E. Power, "Second order Volterra filtering and its application to nonlinear system identification," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, pp. 1445-1455, 1985.
    • (1985) IEEE Trans. Acoust., Speech, Signal Processing , vol.ASSP-33 , pp. 1445-1455
    • Koh, T.1    Power, E.2
  • 31
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 32
    • 0028400622 scopus 로고
    • Image warping by radial basis functions: Application to facial expressions
    • Mar.
    • N. A. Nira Dy, D. Reisfeld, Y. Yeshurun, "Image warping by radial basis functions: application to facial expressions," Comput. Vision, Graphics, Image Processing, vol. 56, pp. 161-172, no. 2. Mar. 1994,
    • (1994) Comput. Vision, Graphics, Image Processing , vol.56 , Issue.2 , pp. 161-172
    • Nira Dy, N.A.1    Reisfeld, D.2    Yeshurun, Y.3
  • 33
    • 84998886272 scopus 로고
    • Analysis-by-synthesis and example based animation with topology conserving neural nets
    • Nov.
    • S. Jockusch and H. Ritter, "Analysis-by-synthesis and example based animation with topology conserving neural nets," in Proc. IEEE 1st Int. Conf. Image Processing, vol. III, Nov. 1994, pp. 953-958.
    • (1994) Proc. IEEE 1st Int. Conf. Image Processing , vol.3 , pp. 953-958
    • Jockusch, S.1    Ritter, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.