-
2
-
-
0034458681
-
-
Elkins S., Ring B.J., Grace J., McRobie-Belle D.J., and Wrighton S.A. J. Pharmacol. Toxicol. Methods 44 (2000) 313
-
(2000)
J. Pharmacol. Toxicol. Methods
, vol.44
, pp. 313
-
-
Elkins, S.1
Ring, B.J.2
Grace, J.3
McRobie-Belle, D.J.4
Wrighton, S.A.5
-
3
-
-
4143147349
-
-
Fura A., Shu Y.-Z., Zhu M., Hanson R.L., Roongta V., and Humphreys W.G. J. Med. Chem. 47 (2004) 4339
-
(2004)
J. Med. Chem.
, vol.47
, pp. 4339
-
-
Fura, A.1
Shu, Y.-Z.2
Zhu, M.3
Hanson, R.L.4
Roongta, V.5
Humphreys, W.G.6
-
4
-
-
0032510318
-
-
Rosenblum S.B., Huynh T., Alfonso A., Davis Jr. H.R., Yumibe N., Clader J.W., and Burnett D.A. J. Med. Chem. 41 (1998) 973
-
(1998)
J. Med. Chem.
, vol.41
, pp. 973
-
-
Rosenblum, S.B.1
Huynh, T.2
Alfonso, A.3
Davis Jr., H.R.4
Yumibe, N.5
Clader, J.W.6
Burnett, D.A.7
-
9
-
-
0034712661
-
-
Janc J.W., Clark J.M., Warne R.L., Katz B.A., and Moore W.R. Biochemistry 39 (2000) 4792
-
(2000)
Biochemistry
, vol.39
, pp. 4792
-
-
Janc, J.W.1
Clark, J.M.2
Warne, R.L.3
Katz, B.A.4
Moore, W.R.5
-
10
-
-
0032484901
-
-
Katz B.A., Clark J.M., Finer-Moore J.S., Jenkins T.E., Johnson C.R., Ross M.J., Luong C., Moore W.R., and Stroud R.M. Nature 391 (1998) 608
-
(1998)
Nature
, vol.391
, pp. 608
-
-
Katz, B.A.1
Clark, J.M.2
Finer-Moore, J.S.3
Jenkins, T.E.4
Johnson, C.R.5
Ross, M.J.6
Luong, C.7
Moore, W.R.8
Stroud, R.M.9
-
11
-
-
33745269076
-
-
Church, T. J.; Cutshall, N. S.; Gangloff, A. R.; Jenkins, T. E.; Linsell, M. S.; Litvak, J.; Rice, K. D.; Spencer, J. R.; Wang, V. R. PCT Int. Appl. WO 9845275, 1998.
-
-
-
-
12
-
-
33745232203
-
-
Dener, J. M.; O'Bryan, C.; Yee, R.; Shelton, E. J.; Sperandio, D.; Mahajan, T.; Palmer, J.; Spencer, J. R.; Tong. Z. Tetrahedron Letters, accepted for publication.
-
-
-
-
13
-
-
0000929901
-
-
Finger G.C., Reed F.H., Burness D.M., Fort D.M., and Blough R.R. J. Am. Chem. Soc. 73 (1951) 145
-
(1951)
J. Am. Chem. Soc.
, vol.73
, pp. 145
-
-
Finger, G.C.1
Reed, F.H.2
Burness, D.M.3
Fort, D.M.4
Blough, R.R.5
-
14
-
-
33745265086
-
-
Mittendorf, J.; Henning, R.; Raddatz, S.; Schlemmer, K.-H.; Hiraoka, M.; Kadono, H.; Mogi, M.; Moriwaki, T.; Murata, T.; Sakakibara, S.; Shimada,.M.; Yoshida, N.; Yoshino. T. PCT Int. Appl. WO 0020401, 2000. The sequence presumably goes through the monoamide and bis(amide) intermediates A and B. Yields of this process tended to be low due to the formation of symmetrical bis(amide) derivatives from two molecules of 14 with reaction 15.{A figure is presented}.
-
-
-
-
15
-
-
0037020737
-
-
Sperandio D., Gangloff A.R., Litvak J., Goldsmith R., Hataye J.M., Wang V.R., Shelton E.J., Elrod K., Janc J.W., Clark J.M., Rice K., Weinheimer S., Yeung K.-S., Meanwell N.A., Hernandez D., Staab A.J., Venables B.L., and Spencer J.S. Bioorg. Med. Chem. Lett. 12 (2002) 3129
-
(2002)
Bioorg. Med. Chem. Lett.
, vol.12
, pp. 3129
-
-
Sperandio, D.1
Gangloff, A.R.2
Litvak, J.3
Goldsmith, R.4
Hataye, J.M.5
Wang, V.R.6
Shelton, E.J.7
Elrod, K.8
Janc, J.W.9
Clark, J.M.10
Rice, K.11
Weinheimer, S.12
Yeung, K.-S.13
Meanwell, N.A.14
Hernandez, D.15
Staab, A.J.16
Venables, B.L.17
Spencer, J.S.18
-
16
-
-
33745263621
-
-
note
-
-.
-
-
-
-
17
-
-
0018241576
-
-
For representative examples of metabolism-mediated N-dealkylation of amides in vitro and in vivo, please see the following references:
-
For representative examples of metabolism-mediated N-dealkylation of amides in vitro and in vivo, please see the following references:. Sugnaux F.R., and Benakis A. Eur. J. Drug Metab. Pharmacokinet. 3 (1978) 235
-
(1978)
Eur. J. Drug Metab. Pharmacokinet.
, vol.3
, pp. 235
-
-
Sugnaux, F.R.1
Benakis, A.2
-
18
-
-
0018360586
-
-
Yoshida K., Manbu K., Arakawa S., Miyazaki H., and Hashimoto M. Biomed. Mass Spectrom. 6 (1979) 253
-
(1979)
Biomed. Mass Spectrom.
, vol.6
, pp. 253
-
-
Yoshida, K.1
Manbu, K.2
Arakawa, S.3
Miyazaki, H.4
Hashimoto, M.5
-
22
-
-
0020563323
-
-
Ross D., Farmer P.B., Geschner A., Hickman J.A., and Threadgill M.D. Biochem. Pharmacol. 32 (1983) 1773
-
(1983)
Biochem. Pharmacol.
, vol.32
, pp. 1773
-
-
Ross, D.1
Farmer, P.B.2
Geschner, A.3
Hickman, J.A.4
Threadgill, M.D.5
-
23
-
-
0032559355
-
-
Tiller P.R., Land A.P., Jardine I., Murphy D.M., Sozio R., Ayrton A., and Schaefer W.H. J. Chromatogr. A 794 (1998) 15
-
(1998)
J. Chromatogr. A
, vol.794
, pp. 15
-
-
Tiller, P.R.1
Land, A.P.2
Jardine, I.3
Murphy, D.M.4
Sozio, R.5
Ayrton, A.6
Schaefer, W.H.7
-
24
-
-
0017609162
-
-
Smith R.L., Bicking J.B., Gould N.P., Lee T.-J., Robb C.M., Keuhl Jr. F.A., Mandel L.R., and Cragoe Jr. E.J. J. Med. Chem 20 (1977) 540
-
(1977)
J. Med. Chem
, vol.20
, pp. 540
-
-
Smith, R.L.1
Bicking, J.B.2
Gould, N.P.3
Lee, T.-J.4
Robb, C.M.5
Keuhl Jr., F.A.6
Mandel, L.R.7
Cragoe Jr., E.J.8
-
25
-
-
0038102458
-
-
note
-
The presence of imine 29 in this reaction was proposed based on LC-MS data from the crude product obtained from the synthesis of 23. Only a few reports of N-acylimines derived from aliphatic aldehydes are represented in the literature since these are known to isomerize to the corresponding enamide: Gizecki, P.; Dhal, R.; Poulard, C.; Gosselin, P.; Dujardin, G. J. Org. Chem. 2003, 68, 4338. Imine 29 may also be produced during the metabolism of 1 in liver microsomes, but it is expected to readily hydrolyze to 22 and 24 under the aqueous conditions employed (see also Ref. 19).
-
-
-
-
26
-
-
33745261459
-
-
note
-
+.
-
-
-
-
27
-
-
33745227955
-
-
note
-
3).
-
-
-
-
28
-
-
33745281572
-
-
note
-
The proton NMR spectrum of the metabolite changes upon storage for about one month. For example, the sharp doublet at 9.01 ppm disappears and two new signals are observed at 10.2 and 9.65 ppm. The latter signal is consistent with the chemical shift for the aldehyde proton in 28, as determined by the chemical shift for the aldehyde proton observed in the proton NMR spectrum from an authentic sample of the aldehyde.
-
-
-
-
29
-
-
33745253287
-
-
note
-
i for this compound was determined to be 2.7 μM, about 100-fold less active than the synthetic sample of 23 and 3-fold less active than the parent compound 1.
-
-
-
-
30
-
-
33745241739
-
-
note
-
Hydroxybenzimidazole 6 could have been a viable candidate for development due to its increased potency relative to 1; however, this option was not considered for two reasons. First of all, this class of inhibitors did not possess sufficient potency at pH 7.4 in physiological concentrations of free zinc. More importantly, we were unable to establish evidence for the formation of stable, inhibitory ternary complexes of zinc, tryptase, and 1 in the human mast cell granules (Amos Baruch and James Clark, unpublished work).
-
-
-
|