-
1
-
-
8844263043
-
-
Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362.
-
(2004)
Science
, vol.306
, pp. 1362
-
-
Hata, K.1
Futaba, D.N.2
Mizuno, K.3
Namai, T.4
Yumura, M.5
Iijima, S.6
-
2
-
-
0742321831
-
-
Murakami, Y.; Chiashi, S.; Miyauchi, Y.; Hu, M.; Ogura, M.; Okubo, T.; Maruyama, S. Chem. Phys. Lett. 2004, 385, 298.
-
(2004)
Chem. Phys. Lett.
, vol.385
, pp. 298
-
-
Murakami, Y.1
Chiashi, S.2
Miyauchi, Y.3
Hu, M.4
Ogura, M.5
Okubo, T.6
Maruyama, S.7
-
3
-
-
18144395440
-
-
Murakami, Y.; Einarsson, E.; Edamura, T.; Maruyama, S. Phys. Rev. Lett. 2005, 94, 87402.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 87402
-
-
Murakami, Y.1
Einarsson, E.2
Edamura, T.3
Maruyama, S.4
-
4
-
-
0347988239
-
-
Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Science 2004, 303, 62.
-
(2004)
Science
, vol.303
, pp. 62
-
-
Hinds, B.J.1
Chopra, N.2
Rantell, T.3
Andrews, R.4
Gavalas, V.5
Bachas, L.G.6
-
5
-
-
10844262642
-
-
Ishida, M.; Hongo, H.; Nihey, F.; Ochiai, Y. Jpn. J. Appl. Phys. 2004, 43, L1356.
-
(2004)
Jpn. J. Appl. Phys.
, vol.43
-
-
Ishida, M.1
Hongo, H.2
Nihey, F.3
Ochiai, Y.4
-
6
-
-
0141545020
-
-
(a) Hongo, H.; Nihey, F.; Ichihashi, T.; Ochiai, Y.; Yudasaka, M.; Iijima, S. Chem. Phys. Lett. 2003, 380, 158.
-
(2003)
Chem. Phys. Lett.
, vol.380
, pp. 158
-
-
Hongo, H.1
Nihey, F.2
Ichihashi, T.3
Ochiai, Y.4
Yudasaka, M.5
Iijima, S.6
-
7
-
-
0141741678
-
-
(b) Seidel, R.; Liebau, M.; Duesberg, G. S.; Kreupl, F.; Unger, E.; Graham, A. P.; Hoenlein, W.; Pompe, W. Nano Lett. 2003, 3, 965.
-
(2003)
Nano Lett.
, vol.3
, pp. 965
-
-
Seidel, R.1
Liebau, M.2
Duesberg, G.S.3
Kreupl, F.4
Unger, E.5
Graham, A.P.6
Hoenlein, W.7
Pompe, W.8
-
8
-
-
0141563569
-
-
(c) Zhang, R. Y.; Amlani, I.; Baker, J.; Tresek, J.; Tsui, R. K. Nano Lett. 2003, 3, 731.
-
(2003)
Nano Lett.
, vol.3
, pp. 731
-
-
Zhang, R.Y.1
Amlani, I.2
Baker, J.3
Tresek, J.4
Tsui, R.K.5
-
9
-
-
27144527237
-
-
Futaba, D. N.; Hata, K.; Yamada, T.; Mizuno, K.; Yumura, M.; Iijima, S. Phys. Rev. Lett. 2005, 95, 56104.
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 56104
-
-
Futaba, D.N.1
Hata, K.2
Yamada, T.3
Mizuno, K.4
Yumura, M.5
Iijima, S.6
-
10
-
-
84906398087
-
-
note
-
Uncertainty in the estimation for the SWNT forest mass density is based on standard error propagation in calculation of the average density, where the density for each individual sample is calculated from the SWNT forest mass and its physical dimensions.
-
-
-
-
11
-
-
15444347981
-
-
(a) Rao, A. M; et al. Science 1997, 275, 187.
-
(1997)
Science
, vol.275
, pp. 187
-
-
Rao, A.M.1
-
12
-
-
11244335399
-
-
(b) Sandow, S.; Asaka, A.; Saito, Y.; Rao, A. M.; Grigorian, L.; Richter, E.; Eklund, P. C. Phys. Rev. Lett. 1998, 80, 3779.
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 3779
-
-
Sandow, S.1
Asaka, A.2
Saito, Y.3
Rao, A.M.4
Grigorian, L.5
Richter, E.6
Eklund, P.C.7
-
14
-
-
84906359896
-
-
note
-
(b) Uncertainty in the SWNT diameter distribution was estimated by using standard enpr analysis of the 407 measurements of the diameter. The average uncertainty in an individual measurement, the standard deviation (SD), was found to be 0.7 nm. The reported error value is the standard error of the mean, which is a measure of the uncertainty in the mean value as defined by SD/√N, where N is the number of measurements.
-
-
-
-
15
-
-
0035251555
-
-
Jorio A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Phys. Rev. Lett. 2001, 86, 1118.
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 1118
-
-
Jorio, A.1
Saito, R.2
Hafner, J.H.3
Lieber, C.M.4
Hunter, M.5
McClure, T.6
Dresselhaus, G.7
Dresselhaus, M.S.8
-
16
-
-
84906412570
-
-
note
-
Error in the linear mass density follows directly from the linear relationship with the diameter. Therefore, through error propagation, the fractional error of both the diameter and the linear mass density are identical.
-
-
-
-
17
-
-
84906374211
-
-
note
-
The error in the catalyst area density estimation was identical with the error estimation for the mean diameter. The histogram of the 64 separate measurements of the density by SEM observation was fitted by a Gaussian distribution to obtain a standard deviation (SD). The reported error value is the standard error of the mean, which is a measure of the uncertainty in the mean value as defined by SD/√W, where N is the number of measurements.
-
-
-
|