메뉴 건너뛰기




Volumn 22, Issue 6, 2006, Pages 731-738

Gene network inference from incomplete expression data: Transcriptional control of hematopoietic commitment

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BAYES THEOREM; COMPUTER MODEL; COMPUTER SIMULATION; GENE CONTROL; GENE EXPRESSION; GENETIC ENGINEERING; HEMATOPOIETIC STEM CELL; NOISE REDUCTION; PRIORITY JOURNAL; TRANSCRIPTION REGULATION;

EID: 33645098819     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/bti820     Document Type: Article
Times cited : (13)

References (32)
  • 2
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predict the expression pattern of the segment polarity gene in Drosophila melanogaster
    • Albert,R. and Othmer,H.G. (2003) The topology of the regulatory interactions predict the expression pattern of the segment polarity gene in Drosophila melanogaster. J. Theoret. Biol., 223, 1-18.
    • (2003) J. Theoret. Biol. , vol.223 , pp. 1-18
    • Albert, R.1    Othmer, H.G.2
  • 3
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Bar-Joseph,Z. (2004) Analyzing time series gene expression data. Bioinformatics, 20, 2493-2503.
    • (2004) Bioinformatics , vol.20 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 4
    • 13844253637 scopus 로고    scopus 로고
    • A Bayesian approach to reconstructing genetic regulatory networks with hidden factors
    • Beal,M.J. et al. (2005) A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21, 349-356.
    • (2005) Bioinformatics , vol.21 , pp. 349-356
    • Beal, M.J.1
  • 5
    • 0029346879 scopus 로고
    • Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells
    • Brady,G. et al. (1995) Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr. Biol., 5, 909-922.
    • (1995) Curr. Biol. , vol.5 , pp. 909-922
    • Brady, G.1
  • 6
    • 0033815579 scopus 로고    scopus 로고
    • Co-repressors 2000
    • Burke,L.J. and Baniahmad,A. (2000) Co-repressors 2000. FASEB J., 14, 1876-1888.
    • (2000) FASEB J. , vol.14 , pp. 1876-1888
    • Burke, L.J.1    Baniahmad, A.2
  • 7
    • 3042661669 scopus 로고
    • Extended dependency analysis of large systems part I: Dynamic analysis
    • Conant,R.C. (1988) Extended dependency analysis of large systems part I: dynamic analysis. Int. J. General Syst., 14, 97-123.
    • (1988) Int. J. General Syst. , vol.14 , pp. 97-123
    • Conant, R.C.1
  • 8
    • 0030838280 scopus 로고    scopus 로고
    • The lineage commitment of haemopoietic progenitor cells
    • Cross,M.A. and Enver,T. (1997) The lineage commitment of haemopoietic progenitor cells. Curr. Opin. Genet. Dev., 7, 609-613.
    • (1997) Curr. Opin. Genet. Dev. , vol.7 , pp. 609-613
    • Cross, M.A.1    Enver, T.2
  • 9
    • 0002629270 scopus 로고
    • Maximum-likelihood from incomplete data via the EM algorithm
    • Dempster,A.P. et al. (1977) Maximum-likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc., 39, 1-38.
    • (1977) J. R. Stat. Soc. , vol.39 , pp. 1-38
    • Dempster, A.P.1
  • 10
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'haeseleer,P. et al. (2000) Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics, 16, 707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1
  • 11
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Nashville, TN, USA
    • Friedman,N. (1997) Learning belief networks in the presence of missing values and hidden variables. In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, pp. 125-133.
    • (1997) Proceedings of the 14th International Conference on Machine Learning , pp. 125-133
    • Friedman, N.1
  • 12
    • 33645107593 scopus 로고    scopus 로고
    • Version 2.1 Libb for Windows/Linux 2.1
    • Friedman,N. and Elidan,G. Version 2.1 Libb for Windows/Linux 2.1.
    • Friedman, N.1    Elidan, G.2
  • 14
    • 0037062951 scopus 로고    scopus 로고
    • RNA interference
    • Hannon,G.J. (2002) RNA interference. Nature, 418, 244-251.
    • (2002) Nature , vol.418 , pp. 244-251
    • Hannon, G.J.1
  • 15
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Technical Report MSR-TR-95-06 Microsoft Research
    • Heckerman,D. (1995) A tutorial on learning with Bayesian networks. Technical report MSR-TR-95-06, Microsoft Research.
    • (1995)
    • Heckerman, D.1
  • 16
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman,D. et al. (1995) Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learning, 20, 197-243.
    • (1995) Mach. Learning , vol.20 , pp. 197-243
    • Heckerman, D.1
  • 17
    • 6044270503 scopus 로고    scopus 로고
    • The origin of hematopoietic cell type diversity
    • Hoang,T. (2004) The origin of hematopoietic cell type diversity. Oncogene, 23, 7188-7198.
    • (2004) Oncogene , vol.23 , pp. 7188-7198
    • Hoang, T.1
  • 18
    • 0036713497 scopus 로고    scopus 로고
    • Representation is faithfully preserved in global cDNA amplified exponentially from sup-picogram quantities of mRNA
    • Iscove,N.N. et al. (2002) Representation is faithfully preserved in global cDNA amplified exponentially from sup-picogram quantities of mRNA. Nat. Biotechnol., 20, 940-943.
    • (2002) Nat. Biotechnol. , vol.20 , pp. 940-943
    • Iscove, N.N.1
  • 20
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • Liang,S. et al. (1998) Reveal, a general reverse engineering algorithm for inference of genetic network architectures. Pac. Symp. Biocomput., 3, 18-29.
    • (1998) Pac. Symp. Biocomput. , vol.3 , pp. 18-29
    • Liang, S.1
  • 21
    • 0242516115 scopus 로고    scopus 로고
    • The transient expression of PU.1 commits multipotent progenitors to a myeloid fate, while continued expression favours macrophage over granulocyte differentiation
    • McIvor,Z. et al. (2003) The transient expression of PU.1 commits multipotent progenitors to a myeloid fate, while continued expression favours macrophage over granulocyte differentiation. Exp. Hematol., 31, 39-47.
    • (2003) Exp. Hematol. , vol.31 , pp. 39-47
    • McIvor, Z.1
  • 23
    • 0005770331 scopus 로고
    • Note on the bias of information estimates
    • The Free Press, Glencoe, IL
    • Miller,G.A. (1955) Note on the bias of information estimates. Information Theory in Psychology. The Free Press, Glencoe, IL.
    • (1955) Information Theory in Psychology.
    • Miller, G.A.1
  • 24
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • Technical Report, Computer Science Division University of California, Berkeley, CA
    • Murphy,K. and Mian,S. (1999) Modelling gene expression data using dynamic Bayesian networks. Technical report, Computer Science Division, University of California, Berkeley, CA.
    • (1999)
    • Murphy, K.1    Mian, S.2
  • 25
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E.coli from time series expression profiles
    • Ong,I.M. et al. (2002) Modelling regulatory pathways in E.coli from time series expression profiles. Bioinformatics, 18 (suppl.1), S241-S248.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Ong, I.M.1
  • 26
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er,D. et al. (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics, 17 (suppl.1), S215-S224.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Pe'er, D.1
  • 27
    • 15944367731 scopus 로고    scopus 로고
    • Reconstructing biological networks using conditional correlation analysis
    • Rice,J.J. et al. (2005) Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 21, 765-773.
    • (2005) Bioinformatics , vol.21 , pp. 765-773
    • Rice, J.J.1
  • 28
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs,K. et al. (2005) causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 29
    • 10244252785 scopus 로고    scopus 로고
    • A model-based optimization framework for the inference on gene regulatory networks from DNA array data
    • Thomas,R. et al. (2004) A model-based optimization framework for the inference on gene regulatory networks from DNA array data. Bioinformatics, 20, 3221-3235.
    • (2004) Bioinformatics , vol.20 , pp. 3221-3235
    • Thomas, R.1
  • 30
    • 0034960264 scopus 로고    scopus 로고
    • Missing value estimation methods for DNA microarrays
    • Troyanskaya,O. et al. (2001) Missing value estimation methods for DNA microarrays. Bioinformatics, 17, 520-525.
    • (2001) Bioinformatics , vol.17 , pp. 520-525
    • Troyanskaya, O.1
  • 31
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu,J. et al. (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20, 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • Yu, J.1
  • 32
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou,M. and Conzen,S.D. (2005) A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21, 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.