메뉴 건너뛰기




Volumn 62, Issue 3, 2006, Pages 749-759

A self-stabilized model of the chymotrypsin catalytic pocket. The energy profile of the overall catalytic cycle

Author keywords

Ab initio; Catalysis; Inhibitor; Quantum chemistry; Substrate

Indexed keywords

AMINO ACID SEQUENCE; ARTICLE; CATALYSIS; ENERGY; ENZYME ACTIVATION; ENZYME ACTIVE SITE; ENZYME CONFORMATION; ENZYME MECHANISM; ENZYME SUBSTRATE; MOLECULAR MODEL; PRIORITY JOURNAL;

EID: 31944452006     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.20827     Document Type: Article
Times cited : (8)

References (54)
  • 1
    • 0035863727 scopus 로고    scopus 로고
    • Specificity assay of serine proteinases by reverse-phase high-performance liquid chromatography analysis of competing oligopeptide substrate library
    • Antal J, Pál G, Asbóth B, Buzás Zs, Patthy A, Gráf L. Specificity assay of serine proteinases by reverse-phase high-performance liquid chromatography analysis of competing oligopeptide substrate library. Anal Biochem 2001;288:156-167.
    • (2001) Anal Biochem , vol.288 , pp. 156-167
    • Antal, J.1    Pál, G.2    Asbóth, B.3    Buzás, Zs.4    Patthy, A.5    Gráf, L.6
  • 2
    • 0017119796 scopus 로고
    • Detailed structural comparison between charge relay system in chymotrypsinogen and in alpha-chymotrypsin
    • Birktoft JJ, Kraut J, Freer ST. Detailed structural comparison between charge relay system in chymotrypsinogen and in alpha-chymotrypsin. Biochemistry 1976;15:4481-4485.
    • (1976) Biochemistry , vol.15 , pp. 4481-4485
    • Birktoft, J.J.1    Kraut, J.2    Freer, S.T.3
  • 3
    • 0015866169 scopus 로고
    • Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease. Implications for the catalytic mechanism of serine proteases
    • Hunkapiller MW, Smallcombe SH, Whitaker DR, Richards JH. Carbon nuclear magnetic resonance studies of the histidine residue in α-lytic protease. Implications for the catalytic mechanism of serine proteases. Biochemistry 1973;12:4732-4743.
    • (1973) Biochemistry , vol.12 , pp. 4732-4743
    • Hunkapiller, M.W.1    Smallcombe, S.H.2    Whitaker, D.R.3    Richards, J.H.4
  • 4
    • 33947094423 scopus 로고
    • Nitrogen-15 Nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of α-lytic protease. Implications for the charge-relay mechanism of peptide-bohd cleavage by serine proteases
    • Bachovchin WW, Roberts JD. Nitrogen-15 Nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of α-lytic protease. Implications for the charge-relay mechanism of peptide-bohd cleavage by serine proteases. J Am Chem Soc 1978;100:8041-80471.
    • (1978) J Am Chem Soc , vol.100 , pp. 8041-80471
    • Bachovchin, W.W.1    Roberts, J.D.2
  • 5
    • 0028040716 scopus 로고
    • A low-barrier hydrogen bond in the catalytic triad of serine proteases
    • Frey PA, Whitt SA, Tobin JB. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science 1994;264:1927-1930.
    • (1994) Science , vol.264 , pp. 1927-1930
    • Frey, P.A.1    Whitt, S.A.2    Tobin, J.B.3
  • 6
    • 2442606719 scopus 로고    scopus 로고
    • The low barrier hydrogen bond (LBHB) proposal revisited: The case of the Asp ... His pair in serine proteases
    • Shutz CN, Warshel A. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp ... His pair in serine proteases. Proteins Struct Funct Bioinf 2004;55:711-723.
    • (2004) Proteins Struct Funct Bioinf , vol.55 , pp. 711-723
    • Shutz, C.N.1    Warshel, A.2
  • 7
    • 1042268087 scopus 로고    scopus 로고
    • Is there a weak H-bond3LBHB transition on tetrahedral complex formation in serine proteases?
    • Shokhen M, Albeck A. Is there a weak H-bond3LBHB transition on tetrahedral complex formation in serine proteases? Proteins Struct Funct Bioinf 2004;54:468-477.
    • (2004) Proteins Struct Funct Bioinf , vol.54 , pp. 468-477
    • Shokhen, M.1    Albeck, A.2
  • 8
    • 0034641613 scopus 로고    scopus 로고
    • Unusual H-1 NMR chemical shifts support (His) C-epsilon 1-H center dot center dot center dot O = C H-bond: Proposal for reaction-driven ring flip mechanism in serine protease catalysis
    • Ash EL, Sudmeier JL, Day RM, Vincent M, Torchilin EV, Haddad KC, Bradshaw EM, Sanford DG, Bachovchin WW Unusual H-1 NMR chemical shifts support (His) C-epsilon 1-H center dot center dot center dot O = C H-bond: proposal for reaction-driven ring flip mechanism in serine protease catalysis. Proc Natl Acad Sci USA 2000;97:10371-10376.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 10371-10376
    • Ash, E.L.1    Sudmeier, J.L.2    Day, R.M.3    Vincent, M.4    Torchilin, E.V.5    Haddad, K.C.6    Bradshaw, E.M.7    Sanford, D.G.8    Bachovchin, W.W.9
  • 10
    • 0034600049 scopus 로고    scopus 로고
    • Enzyme mechanisms: Interplay of theory and experiment
    • Náray-Szabó G, Enzyme mechanisms: interplay of theory and experiment. J Mol Struct (Theochem) 2000;500:157-167.
    • (2000) J Mol Struct (Theochem) , vol.500 , pp. 157-167
    • Náray-Szabó, G.1
  • 11
    • 0035707451 scopus 로고    scopus 로고
    • Dynamics of biochemical and biophysical reactions: Insight from computer simulations
    • Warshel A, Parson WW. Dynamics of biochemical and biophysical reactions: insight from computer simulations. Q Rev Biophys 2001;34:563-679.
    • (2001) Q Rev Biophys , vol.34 , pp. 563-679
    • Warshel, A.1    Parson, W.W.2
  • 12
    • 0035940264 scopus 로고    scopus 로고
    • Energetics and dynamics of enzymatic reactions
    • Villa J, Warshel A. Energetics and dynamics of enzymatic reactions. J Phys Chem B 2001;105:7887-7907.
    • (2001) J Phys Chem B , vol.105 , pp. 7887-7907
    • Villa, J.1    Warshel, A.2
  • 13
    • 0036675380 scopus 로고    scopus 로고
    • The H-1-NMR solution structure of the antitryptic core peptide of Bowman-Birk inhibitor proteins: A minimal "canonical loop"
    • Brauer ABE, Kelly G, Matthews SJ, Leatherbarrow RJ. The H-1-NMR solution structure of the antitryptic core peptide of Bowman-Birk inhibitor proteins: a minimal "canonical loop." J Biomol Struct Dyn 2002;20:59-70.
    • (2002) J Biomol Struct Dyn , vol.20 , pp. 59-70
    • Brauer, A.B.E.1    Kelly, G.2    Matthews, S.J.3    Leatherbarrow, R.J.4
  • 14
    • 12144288333 scopus 로고    scopus 로고
    • Same fold with different mobility: Backbone dynamics of small protease inhibitors from the desert locust, Schistocerca gregaria
    • Szenthe B, Gaspari Z, Nagy A, Perczel A, Graf L. Same fold with different mobility: backbone dynamics of small protease inhibitors from the desert locust, Schistocerca gregaria. Biochemistry 2004;43:3376-3384.
    • (2004) Biochemistry , vol.43 , pp. 3376-3384
    • Szenthe, B.1    Gaspari, Z.2    Nagy, A.3    Perczel, A.4    Graf, L.5
  • 15
    • 0030982322 scopus 로고    scopus 로고
    • Effects of serpin binding on the target proteinase: Global stabilization, localized increased structural flexibility, and conserved hydrogen bonding at the active site
    • Kaslik G, Kardos J, Szabó E, Szilágyi L, Závodszky P, Westler WM, Markley JL, Gráf L. Effects of serpin binding on the target proteinase: global stabilization, localized increased structural flexibility, and conserved hydrogen bonding at the active site. Biochemistry 1997;36:5455-5464.
    • (1997) Biochemistry , vol.36 , pp. 5455-5464
    • Kaslik, G.1    Kardos, J.2    Szabó, E.3    Szilágyi, L.4    Závodszky, P.5    Westler, W.M.6    Markley, J.L.7    Gráf, L.8
  • 16
    • 0031053519 scopus 로고    scopus 로고
    • Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease
    • Stone SR, le Bonniec BF. Inhibitory mechanism of serpins. Identification of steps involving the active-site serine residue of the protease. J Mol Biol 1997;264:344-362.
    • (1997) J Mol Biol , vol.264 , pp. 344-362
    • Stone, S.R.1    Le Bonniec, B.F.2
  • 17
    • 0001601749 scopus 로고
    • The anatomy of an enzymatic catalysis. α-Chymotrypsin
    • Bender ML, Kézdy FJ, Gunter CR. The anatomy of an enzymatic catalysis. α-Chymotrypsin. J Am Chem Soc 1964;86:3714-3721.
    • (1964) J Am Chem Soc , vol.86 , pp. 3714-3721
    • Bender, M.L.1    Kézdy, F.J.2    Gunter, C.R.3
  • 18
    • 0001650759 scopus 로고
    • Theoretical correlation of structure and energetics in the catalytic reaction of trypsin
    • Warshel A, Russel S. Theoretical correlation of structure and energetics in the catalytic reaction of trypsin. J Am Chem Soc 1986;108:6569-6579.
    • (1986) J Am Chem Soc , vol.108 , pp. 6569-6579
    • Warshel, A.1    Russel, S.2
  • 19
    • 0032538627 scopus 로고    scopus 로고
    • Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites
    • Warshel A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J. Biol Chem 1998;273:27035-27038.
    • (1998) J Biol Chem , vol.273 , pp. 27035-27038
    • Warshel, A.1
  • 20
    • 2642622572 scopus 로고    scopus 로고
    • Combined ab initio and free energy calculations to study reactions in enzymes and solution: Amide hydrolysis in trypsin and aqueous solution
    • Stanton RV, Peräkyläl M, Bakowies D, Kollman PA. Combined ab initio and free energy calculations to study reactions in enzymes and solution: amide hydrolysis in trypsin and aqueous solution. J Am Chem Soc 1998;120:3448-3457.
    • (1998) J Am Chem Soc , vol.120 , pp. 3448-3457
    • Stanton, R.V.1    Peräkyläl, M.2    Bakowies, D.3    Kollman, P.A.4
  • 21
    • 0034237219 scopus 로고    scopus 로고
    • Factors determining the relative stability of anionic tetrahedral complexes in serine protease catalysis and inhibition
    • Shokhen M, Albeck A. Factors determining the relative stability of anionic tetrahedral complexes in serine protease catalysis and inhibition. Proteins Struct Funct Genet 2000;40:154-167.
    • (2000) Proteins Struct Funct Genet , vol.40 , pp. 154-167
    • Shokhen, M.1    Albeck, A.2
  • 22
    • 2542452692 scopus 로고    scopus 로고
    • Stability issues of covalently and noncovalently bonded peptide subunits
    • Perczel A, Hudáky P, Füzéry AK, Csizmadia IG. Stability issues of covalently and noncovalently bonded peptide subunits. J Comput Chem 2004;25:1084-1100.
    • (2004) J Comput Chem , vol.25 , pp. 1084-1100
    • Perczel, A.1    Hudáky, P.2    Füzéry, A.K.3    Csizmadia, I.G.4
  • 23
    • 0033597637 scopus 로고    scopus 로고
    • Theoretical study of base-catalyzed amide hydrolysis: Gas- and aqueous-phase hydrolysis of formamide
    • Bakowies D, Kollman PA. Theoretical study of base-catalyzed amide hydrolysis: gas- and aqueous-phase hydrolysis of formamide. J Am Chem Soc 1999;121:5712-5726.
    • (1999) J Am Chem Soc , vol.121 , pp. 5712-5726
    • Bakowies, D.1    Kollman, P.A.2
  • 24
    • 0034616816 scopus 로고    scopus 로고
    • Ab initio evaluation of the potential surface for general base-catalyzed methanolysis of formamide: A reference solution reaction for studies of serine proteases
    • Štrajbl M, Florian J, Warshel A. Ab initio evaluation of the potential surface for general base-catalyzed methanolysis of formamide: a reference solution reaction for studies of serine proteases. J Am Chem Soc 2000;122:5354-5366.
    • (2000) J Am Chem Soc , vol.122 , pp. 5354-5366
    • Štrajbl, M.1    Florian, J.2    Warshel, A.3
  • 25
    • 0037090461 scopus 로고    scopus 로고
    • A theoretical analysis of the free-energy profile of the different pathways in the alkaline hydrolysis of methyl formate in aqueous solution
    • Pliego JR Jr, Riveros JM. A theoretical analysis of the free-energy profile of the different pathways in the alkaline hydrolysis of methyl formate in aqueous solution. Chem Eur J 2002;8:1945-1953.
    • (2002) Chem Eur J , vol.8 , pp. 1945-1953
    • Pliego Jr., J.R.1    Riveros, J.M.2
  • 26
    • 0038243088 scopus 로고    scopus 로고
    • Modeling the reaction mechanisms of the amide hydrolysis in an N-(o-carboxybenzoyl)-L-amino acid
    • Wu Z, Ban F, Boyd RJ. Modeling the reaction mechanisms of the amide hydrolysis in an N-(o-carboxybenzoyl)-L-amino acid. J Am Chem Soc 2003;125:6994-7000.
    • (2003) J Am Chem Soc , vol.125 , pp. 6994-7000
    • Wu, Z.1    Ban, F.2    Boyd, R.J.3
  • 27
    • 0037066188 scopus 로고    scopus 로고
    • Energy profiles for the rate-limiting stage of the serine protease prototype reaction
    • Nemukhin AV, Topol IA, Burt SK. Energy profiles for the rate-limiting stage of the serine protease prototype reaction. Int J Quantum Chem 2002;88:34-40.
    • (2002) Int J Quantum Chem , vol.88 , pp. 34-40
    • Nemukhin, A.V.1    Topol, I.A.2    Burt, S.K.3
  • 28
    • 0017100947 scopus 로고
    • Theoretical studies of enzymic reactions - Dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme
    • Warshel A, Levitt M. Theoretical studies of enzymic reactions-dielectric, electrostatic and steric stabilization of carbonium-ion in reaction of lysozyme. J Mol Biol 1976;103:227-249.
    • (1976) J Mol Biol , vol.103 , pp. 227-249
    • Warshel, A.1    Levitt, M.2
  • 29
    • 0000728542 scopus 로고
    • Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the polaris and enzymix programs
    • Lee FS, Chu ZT, Warshel A. Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the polaris and enzymix programs. J Comp Chem 1993;14:161-185.
    • (1993) J Comp Chem , vol.14 , pp. 161-185
    • Lee, F.S.1    Chu, Z.T.2    Warshel, A.3
  • 30
    • 0039895830 scopus 로고    scopus 로고
    • Quantum mechanical/molecular mechanical study of three stationary points along the deacylation step of the catalytic mechanism of elastase
    • Topf M, Várnai P, Richards WG. Quantum mechanical/molecular mechanical study of three stationary points along the deacylation step of the catalytic mechanism of elastase. Theor Chem Acc 2001;106:146-151.
    • (2001) Theor Chem Acc , vol.106 , pp. 146-151
    • Topf, M.1    Várnai, P.2    Richards, W.G.3
  • 31
    • 2242428041 scopus 로고    scopus 로고
    • Ab initio QM/MM dynamics simulation of the tetrahedral intermediate of serine proteases: Insights into the active site hydrogen-bonding network
    • Topf M, Várnai P, Richards WG. Ab initio QM/MM dynamics simulation of the tetrahedral intermediate of serine proteases: insights into the active site hydrogen-bonding network. J Am Chem Soc 2002;124:14780-14788.
    • (2002) J Am Chem Soc , vol.124 , pp. 14780-14788
    • Topf, M.1    Várnai, P.2    Richards, W.G.3
  • 32
    • 0043141259 scopus 로고
    • An empirical valence bond approach for comparing reactions in solutions and in enzymes
    • Warshel A, Weiss RM. An empirical valence bond approach for comparing reactions in solutions and in enzymes. J Am Chem Soc 1980;102:6218-6226.
    • (1980) J Am Chem Soc , vol.102 , pp. 6218-6226
    • Warshel, A.1    Weiss, R.M.2
  • 33
    • 0036324079 scopus 로고    scopus 로고
    • Density functional theory-based molecular dynamics of biological systems
    • Carloni P. Density functional theory-based molecular dynamics of biological systems. Quantum Struct Act Relat 2002;21:166-172.
    • (2002) Quantum Struct Act Relat , vol.21 , pp. 166-172
    • Carloni, P.1
  • 34
    • 11644294259 scopus 로고    scopus 로고
    • Hybrid ab initio quantum mechanics molecular mechanics calculations of free energy surfaces for enzymatic reactions: The nucleophilic attack in subtilisin
    • Bentzien J, Muller RP, Florian J, Warshel A. Hybrid ab initio quantum mechanics molecular mechanics calculations of free energy surfaces for enzymatic reactions: the nucleophilic attack in subtilisin. J Phys Chem B 1998;102:2293-2301.
    • (1998) J Phys Chem B , vol.102 , pp. 2293-2301
    • Bentzien, J.1    Muller, R.P.2    Florian, J.3    Warshel, A.4
  • 35
    • 0141732211 scopus 로고    scopus 로고
    • Theoretical perspectives on the reaction mechanism of serine proteases: The reaction free energy profiles of the acylation process
    • Ishida T, Kato S. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process. J Am Chem Soc 2003;125:12035-12048.
    • (2003) J Am Chem Soc , vol.125 , pp. 12035-12048
    • Ishida, T.1    Kato, S.2
  • 36
    • 0000747252 scopus 로고
    • Catalytic pathway of serine proteases: Classical and quantum mechanical calculations
    • Daggett V, Schröder S, Kollman PA. Catalytic pathway of serine proteases: classical and quantum mechanical calculations. J Am Chem Soc 1991;113:8926-8935.
    • (1991) J Am Chem Soc , vol.113 , pp. 8926-8935
    • Daggett, V.1    Schröder, S.2    Kollman, P.A.3
  • 37
    • 0003109106 scopus 로고    scopus 로고
    • Ab initio/LD studies of chemical reactions in solution: Reference free-energy surfaces for acylation reactions occurring in serine and cysteine proteases
    • Štrajbl M, Florian J, Warshel A. Ab initio/LD studies of chemical reactions in solution: reference free-energy surfaces for acylation reactions occurring in serine and cysteine proteases. Int J Quantum Chem 2000;77:44-53.
    • (2000) Int J Quantum Chem , vol.77 , pp. 44-53
    • Štrajbl, M.1    Florian, J.2    Warshel, A.3
  • 38
    • 1642329826 scopus 로고    scopus 로고
    • Modeling of serine protease prototype reactions with the flexible effective fragment potential quantum mechanical/molecular mechanical method
    • Nemukhin AV, Grigorenko BL, Rogov AV, Topol IA, Burt SK. Modeling of serine protease prototype reactions with the flexible effective fragment potential quantum mechanical/molecular mechanical method. Theor Chem Acc 2004;111:36-48.
    • (2004) Theor Chem Acc , vol.111 , pp. 36-48
    • Nemukhin, A.V.1    Grigorenko, B.L.2    Rogov, A.V.3    Topol, I.A.4    Burt, S.K.5
  • 39
    • 0033168389 scopus 로고    scopus 로고
    • The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the protease
    • Szabó E, Böcskei Zs, Náray-Szabó G, Gráf L. The three-dimensional structure of Asp189Ser trypsin provides evidence for an inherent structural plasticity of the protease. Eur J Biochem 1999;263:20-26.
    • (1999) Eur J Biochem , vol.263 , pp. 20-26
    • Szabó, E.1    Böcskei, Zs.2    Náray-Szabó, G.3    Gráf, L.4
  • 42
    • 0035914320 scopus 로고    scopus 로고
    • Complexation of two proteic insect inhibitors to the active site of chymotrypsin suggests decoupled roles for binding and selectivity
    • Roussel A, Mathieu M, Dobbs A, Luu A, Cambillau C, Kellenberger C. Complexation of two proteic insect inhibitors to the active site of chymotrypsin suggests decoupled roles for binding and selectivity. J Biol Chem 2001;276:38893-38898.
    • (2001) J Biol Chem , vol.276 , pp. 38893-38898
    • Roussel, A.1    Mathieu, M.2    Dobbs, A.3    Luu, A.4    Cambillau, C.5    Kellenberger, C.6
  • 43
    • 0038292973 scopus 로고
    • Peptide models. 1. Topology of selected peptide conformational potential-energy surfaces (glycine and alanine derivatives)
    • Perczel A, Ángyán JG, Kajtár M, Viviani W, Rivail JL, Marcoccia JF, Csizmadia IG. Peptide models. 1. Topology of selected peptide conformational potential-energy surfaces (glycine and alanine derivatives). J Am Chem Soc 1991;113:6256-6265.
    • (1991) J Am Chem Soc , vol.113 , pp. 6256-6265
    • Perczel, A.1    Ángyán, J.G.2    Kajtár, M.3    Viviani, W.4    Rivail, J.L.5    Marcoccia, J.F.6    Csizmadia, I.G.7
  • 44
    • 0028168468 scopus 로고
    • (His)c-epsilon-h...o=c hydrogen-bond in the active-sites of serine hydrolases
    • Derewenda ZS, Derewenda U, Kobos PM. (His)c-epsilon-h...o=c hydrogen-bond in the active-sites of serine hydrolases. J Mol Biol 1994;241:83-93.
    • (1994) J Mol Biol , vol.241 , pp. 83-93
    • Derewenda, Z.S.1    Derewenda, U.2    Kobos, P.M.3
  • 45
    • 0037495961 scopus 로고    scopus 로고
    • Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory
    • Perczel A, Farkas Ö, Jákli I, Topol IA, Csizmadia IG. Peptide models. XXXIII. Extrapolation of low-level Hartree-Fock data of peptide conformation to large basis set SCF, MP2, DFT, and CCSD(T) results. The Ramachandran surface of alanine dipeptide computed at various levels of theory. J Comput Chem 2003;24:1026-1042.
    • (2003) J Comput Chem , vol.24 , pp. 1026-1042
    • Perczel, A.1    Farkas, Ö.2    Jákli, I.3    Topol, I.A.4    Csizmadia, I.G.5
  • 46
    • 0038650995 scopus 로고    scopus 로고
    • Relative stability of major types of beta-turns as a function of amino acid composition: A study based on ab initio energetic and natural abundance data
    • Perczel A, Jákli I, Mcallister MA, Csizmadia IG. Relative stability of major types of beta-turns as a function of amino acid composition: a study based on ab initio energetic and natural abundance data. Chem Eur J 2003;9:2551-2566.
    • (2003) Chem Eur J , vol.9 , pp. 2551-2566
    • Perczel, A.1    Jákli, I.2    Mcallister, M.A.3    Csizmadia, I.G.4
  • 47
    • 0032494756 scopus 로고    scopus 로고
    • Quantum chemical study of the catalytic triad in subtilisin: The influence of amino acid substitutions on enzymatic activity
    • Baeten A, Maes D, Geerlings P. Quantum chemical study of the catalytic triad in subtilisin: the influence of amino acid substitutions on enzymatic activity. J Theor Biol 1998;195:27-40.
    • (1998) J Theor Biol , vol.195 , pp. 27-40
    • Baeten, A.1    Maes, D.2    Geerlings, P.3
  • 48
    • 0023646665 scopus 로고
    • Rational modification of enzyme catalysis by engineering surface-charge
    • Russell AJ, Fersht AR. Rational modification of enzyme catalysis by engineering surface-charge. Nature 1987;328:496-500.
    • (1987) Nature , vol.328 , pp. 496-500
    • Russell, A.J.1    Fersht, A.R.2
  • 49
    • 0000707160 scopus 로고
    • An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin
    • Corey DR, Craik CS. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. J Am Chem Soc 1992;114:1784-1790.
    • (1992) J Am Chem Soc , vol.114 , pp. 1784-1790
    • Corey, D.R.1    Craik, C.S.2
  • 50
    • 3042855462 scopus 로고    scopus 로고
    • Role of Asp102 in the catalytic relay system of serine proteases: A theoretical study
    • Ishida T, Kato S. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study. J Am Chem Soc 2004;126:7111-7118.
    • (2004) J Am Chem Soc , vol.126 , pp. 7111-7118
    • Ishida, T.1    Kato, S.2
  • 51
    • 2242447088 scopus 로고    scopus 로고
    • Quantum chemical calculations on structural models of the catalytic site of chymotrypsin: Comparison of calculated results with experimental data from NMR spectroscopy
    • Westler WM, Weinhold F, Markley JL. Quantum chemical calculations on structural models of the catalytic site of chymotrypsin: comparison of calculated results with experimental data from NMR spectroscopy. J Am Chem Soc 2002;124:14373-14381.
    • (2002) J Am Chem Soc , vol.124 , pp. 14373-14381
    • Westler, W.M.1    Weinhold, F.2    Markley, J.L.3
  • 52
    • 0024278562 scopus 로고
    • Evaluation of catalytic free energies in genetically modified proteins
    • Warshel A, Sussman F, Hwang JK. Evaluation of catalytic free energies in genetically modified proteins. J Mol Biol 1988;201:139-159.
    • (1988) J Mol Biol , vol.201 , pp. 139-159
    • Warshel, A.1    Sussman, F.2    Hwang, J.K.3
  • 53
    • 0035977002 scopus 로고    scopus 로고
    • Solution structure of a Kunitz-type chymotrypsin inhibitor isolated from the elapid snake Bungarus fasciatus
    • Chen CP, Hsu CH, Su NY, Lin YC, Chiou SH, Wu SH. Solution structure of a Kunitz-type chymotrypsin inhibitor isolated from the elapid snake Bungarus fasciatus. J Biol Chem 2001;276:45079-45087.
    • (2001) J Biol Chem , vol.276 , pp. 45079-45087
    • Chen, C.P.1    Hsu, C.H.2    Su, N.Y.3    Lin, Y.C.4    Chiou, S.H.5    Wu, S.H.6
  • 54
    • 0036090935 scopus 로고    scopus 로고
    • Requirement for hydrophobic Phe residues in Pleurotus ostreatus proteinase A inhibitor 1 for stable inhibition
    • Kojima S, Hisano Y. Requirement for hydrophobic Phe residues in Pleurotus ostreatus proteinase A inhibitor 1 for stable inhibition. Protein Eng 2002;15:325-329.
    • (2002) Protein Eng , vol.15 , pp. 325-329
    • Kojima, S.1    Hisano, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.