메뉴 건너뛰기




Volumn 16, Issue 4, 2005, Pages 407-414

Supervised classification of plant communities with artificial neural networks

Author keywords

Cluster analysis; Grassland; Multi layer perceptron; Phytosociological data; Predictive habitat modelling; Vegetation survey

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMMUNITY COMPOSITION; MODELING; PLANT COMMUNITY; PREDICTION;

EID: 26444585903     PISSN: 11009233     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1654-1103.2005.tb02380.x     Document Type: Article
Times cited : (46)

References (37)
  • 1
    • 14044257068 scopus 로고    scopus 로고
    • Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe
    • Botta-Dukát, Z. Chytrý, M., Hájková, P. & Havlová, M. 2005. Vegetation of lowland wet meadows along a climatic continentality gradient in Central Europe. Preslia 77: 89-111.
    • (2005) Preslia , vol.77 , pp. 89-111
    • Botta-Dukát, Z.1    Chytrý, M.2    Hájková, P.3    Havlová, M.4
  • 2
    • 0035673820 scopus 로고    scopus 로고
    • Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages
    • Brosse, S., Giraudel, J.L. & Lek, S. 2001. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 146: 159-166.
    • (2001) Ecol. Model. , vol.146 , pp. 159-166
    • Brosse, S.1    Giraudel, J.L.2    Lek, S.3
  • 3
    • 0034045263 scopus 로고    scopus 로고
    • A new measure of fidelity and its application to defining species groups
    • Bruelheide, H. 2000. A new measure of fidelity and its application to defining species groups. J. Veg. Sci. 11: 167-178.
    • (2000) J. Veg. Sci. , vol.11 , pp. 167-178
    • Bruelheide, H.1
  • 4
    • 0034045265 scopus 로고    scopus 로고
    • Towards unification of national vegetation classifications: A comparison of two methods for analysis of large data sets
    • Bruelheide, H. & Chytrý, M. 2000. Towards unification of national vegetation classifications: A comparison of two methods for analysis of large data sets. J. Veg. Sci. 11: 295-306.
    • (2000) J. Veg. Sci. , vol.11 , pp. 295-306
    • Bruelheide, H.1    Chytrý, M.2
  • 5
    • 0035659018 scopus 로고    scopus 로고
    • A comparison of methods for predicting vegetation type
    • Cairns, D.M. 2001. A comparison of methods for predicting vegetation type. Plant Ecol. 156: 3-18.
    • (2001) Plant Ecol. , vol.156 , pp. 3-18
    • Cairns, D.M.1
  • 6
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon, T.S., Park, Y.S., Moon, K.H. & Cha, E.Y. 1996. Patternizing communities by using an artificial neural network. Ecol. Model. 90: 69-78.
    • (1996) Ecol. Model. , vol.90 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 7
    • 0038106091 scopus 로고    scopus 로고
    • Czech National Phytosociological Database: Basic statistics of the available vegetation-plot data
    • Chytrý, M. & Rafajová, M. 2003. Czech National Phytosociological Database: basic statistics of the available vegetation-plot data. Preslia 75: 1-15.
    • (2003) Preslia , vol.75 , pp. 1-15
    • Chytrý, M.1    Rafajová, M.2
  • 8
    • 0036231372 scopus 로고    scopus 로고
    • Determination of diagnostic species with statistical fidelity measures
    • Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. 2002. Determination of diagnostic species with statistical fidelity measures. J. Veg. Sci. 13: 79-90.
    • (2002) J. Veg. Sci. , vol.13 , pp. 79-90
    • Chytrý, M.1    Tichý, L.2    Holt, J.3    Botta-Dukát, Z.4
  • 9
    • 0242500440 scopus 로고    scopus 로고
    • Prediction of habitat quality using ordination and neural networks
    • Ejrnæs, R., Aude, E., Nygaard, B. & Münier, B. 2002. Prediction of habitat quality using ordination and neural networks. Ecol. Appl. 12: 1180-1187.
    • (2002) Ecol. Appl. , vol.12 , pp. 1180-1187
    • Ejrnæs, R.1    Aude, E.2    Nygaard, B.3    Münier, B.4
  • 10
    • 2542565819 scopus 로고    scopus 로고
    • Developing a classifier for the Habitats Directive grassland types in Denmark using species lists for prediction
    • Ejrnæs, R., Bruun, H.H., Aude, E. & Buchwald, E. 2004. Developing a classifier for the Habitats Directive grassland types in Denmark using species lists for prediction. Appl. Veg. Sci. 7: 71-80.
    • (2004) Appl. Veg. Sci. , vol.7 , pp. 71-80
    • Ejrnæs, R.1    Bruun, H.H.2    Aude, E.3    Buchwald, E.4
  • 12
    • 0030953391 scopus 로고    scopus 로고
    • A review of methods for the assessment of prediction errors in conservation presence/absence models
    • Fielding, A.H. & Bell, J.F. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24: 38-49.
    • (1997) Environ. Conserv. , vol.24 , pp. 38-49
    • Fielding, A.H.1    Bell, J.F.2
  • 13
    • 0002780271 scopus 로고    scopus 로고
    • Fuzzy modelling of vegetation from remotely sensed imagery
    • Foody, G.M. 1996. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 85: 3-12.
    • (1996) Ecol. Model. , vol.85 , pp. 3-12
    • Foody, G.M.1
  • 14
    • 0033578381 scopus 로고    scopus 로고
    • Applications of the self-organising feature map network in community data analysis
    • Foody, G.M. 1999a. Applications of the self-organising feature map network in community data analysis. Ecol. Model. 120: 97-109.
    • (1999) Ecol. Model. , vol.120 , pp. 97-109
    • Foody, G.M.1
  • 15
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using back propagation learning
    • Foody, G.M. 1999b. The significance of border training patterns in classification by a feedforward neural network using back propagation learning. Int. J. Remote Sens. 20: 3549-3562.
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 3549-3562
    • Foody, G.M.1
  • 16
    • 0035673991 scopus 로고    scopus 로고
    • A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination
    • Giraudel, J.L. & Lek, S. 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol. Model. 146: 329-339.
    • (2001) Ecol. Model. , vol.146 , pp. 329-339
    • Giraudel, J.L.1    Lek, S.2
  • 17
    • 0344052657 scopus 로고    scopus 로고
    • Energy availability and habitat heterogeneity predict global riverine fish diversity
    • Guégan, J.F., Lek, S. & Oberdorff, T. 1998. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391: 382-384.
    • (1998) Nature , vol.391 , pp. 382-384
    • Guégan, J.F.1    Lek, S.2    Oberdorff, T.3
  • 18
    • 14044279673 scopus 로고    scopus 로고
    • Diversity of hay meadows in the Czech Republic: Major types and environmental gradients
    • Havlová, M., Chytrý, M. & Tichý, L. 2004. Diversity of hay meadows in the Czech Republic: major types and environmental gradients. Phytocoenologia 34: 551-567.
    • (2004) Phytocoenologia , vol.34 , pp. 551-567
    • Havlová, M.1    Chytrý, M.2    Tichý, L.3
  • 20
    • 0024934128 scopus 로고
    • Computerized matching of relevés and association tables, with an application to the British National Vegetation Classification
    • Hill, M.O. 1989. Computerized matching of relevés and association tables, with an application to the British National Vegetation Classification. Vegetatio 83: 187-194.
    • (1989) Vegetatio , vol.83 , pp. 187-194
    • Hill, M.O.1
  • 21
    • 0035669680 scopus 로고    scopus 로고
    • The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates
    • Hirlbert, D.W. & Ostendorf, B. 2001. The utility of artificial neural networks for modelling the distribution of vegetation in past, present and future climates. Ecol. Model. 146: 311-327.
    • (2001) Ecol. Model. , vol.146 , pp. 311-327
    • Hirlbert, D.W.1    Ostendorf, B.2
  • 22
    • 0141906415 scopus 로고    scopus 로고
    • Formalized reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation
    • Kočí, M., Chytrý, M. & Tichý, L. 2003. Formalized reproduction of an expert-based phytosociological classification: A case study of subalpine tall-forb vegetation. J. Veg. Sci. 14: 601-610.
    • (2003) J. Veg. Sci. , vol.14 , pp. 601-610
    • Kočí, M.1    Chytrý, M.2    Tichý, L.3
  • 23
    • 0020068152 scopus 로고    scopus 로고
    • Self-organised formation of topologically correct feature maps
    • 198
    • Kohonen, T. 198. Self-organised formation of topologically correct feature maps. Biol. Cybern. 43: 59-69.
    • Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 24
    • 0033578393 scopus 로고    scopus 로고
    • Predicting fish yield of African lakes using neural networks
    • Lae, R., Lek, S. & Moreau, J. 1999. Predicting fish yield of African lakes using neural networks. Ecol. Model. 120: 325-335.
    • (1999) Ecol. Model. , vol.120 , pp. 325-335
    • Lae, R.1    Lek, S.2    Moreau, J.3
  • 26
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek, S. & Guégan, J.F. 1999. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120: 65-73.
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 27
    • 0042427272 scopus 로고    scopus 로고
    • Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data
    • Liu, C.M., Zhang, L.J., Davis, C.J., Solomon, D.S., Brann, T.B. & Caldwell, L.E. 2003. Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data. For. Sci. 49: 619-631.
    • (2003) For. Sci. , vol.49 , pp. 619-631
    • Liu, C.M.1    Zhang, L.J.2    Davis, C.J.3    Solomon, D.S.4    Brann, T.B.5    Caldwell, L.E.6
  • 30
    • 0029415649 scopus 로고
    • A review and analysis of backpropagation neural networks for classification of remotely-sensed multispectral imagery
    • Paola, J.D. & Schowengerdt, R.A. 1995. A review and analysis of backpropagation neural networks for classification of remotely-sensed multispectral imagery. Int. J. Remote Sens. 16: 3033-3058.
    • (1995) Int. J. Remote Sens. , vol.16 , pp. 3033-3058
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G.E. & Wiliams, R.J. 1986. Learning representations by back-propagating errors. Nature 323: 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Wiliams, R.J.3
  • 33
    • 0029666889 scopus 로고    scopus 로고
    • Predicting grassland community changes with an artificial neural network model
    • Tan, S.S. & Smeins, F.E. 1996. Predicting grassland community changes with an artificial neural network model. Ecol. Model. 84: 91-97.
    • (1996) Ecol. Model. , vol.84 , pp. 91-97
    • Tan, S.S.1    Smeins, F.E.2
  • 34
    • 0036621526 scopus 로고    scopus 로고
    • JUICE, software for vegetation classification
    • Tichý, L. 2002. JUICE, software for vegetation classification. J. Veg. Sci. 13: 451-453.
    • (2002) J. Veg. Sci. , vol.13 , pp. 451-453
    • Tichý, L.1
  • 35
    • 0002606629 scopus 로고
    • Transformation of cover-abundance values in phytosociology and its effects on community similarity
    • van der Maarel, E. 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39: 97-114.
    • (1979) Vegetatio , vol.39 , pp. 97-114
    • Van Der Maarel, E.1
  • 37
    • 0031394091 scopus 로고    scopus 로고
    • Application of neural networks to identifying vegetation types from satellite images
    • Zhang, X.H., Li, C. & Yuan, Y.L. 1997. Application of neural networks to identifying vegetation types from satellite images. AI Appl. 11: 99-106.
    • (1997) AI Appl. , vol.11 , pp. 99-106
    • Zhang, X.H.1    Li, C.2    Yuan, Y.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.