메뉴 건너뛰기




Volumn 49, Issue 4, 2003, Pages 619-631

Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data

Author keywords

Accuracy assessment; K nearest neighbor classification; Linear discriminant analysis; Minimum distance classification; Multi Layer Perceptron (MLP); Radial Basis Function (RBF)

Indexed keywords

ALGORITHMS; ECOLOGY; NEURAL NETWORKS; STATISTICAL METHODS;

EID: 0042427272     PISSN: 0015749X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (60)

References (56)
  • 1
    • 0031277523 scopus 로고    scopus 로고
    • Comparison of fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels
    • BASTIN, L. 1997. Comparison of fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels. Internat. J. Rem. Sens. 18(17):3629-3648.
    • (1997) Internat. J. Rem. Sens. , vol.18 , Issue.17 , pp. 3629-3648
    • Bastin, L.1
  • 2
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • BENEDIKTSSON, J.A., P.H. SWAIN, AND O.K. ERSOY. 1990. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on Geosci. Rem. Sens. 28(4):540-551.
    • (1990) IEEE Transactions on Geosci. Rem. Sens. , vol.28 , Issue.4 , pp. 540-551
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 3
    • 0030618061 scopus 로고    scopus 로고
    • Multisource classification of complex rural areas by statistical and neural network approaches
    • BRUZZONE, L., C. CONESE, F. MASELLI, AND F. ROLI 1997. Multisource classification of complex rural areas by statistical and neural network approaches. Photogramm. Eng. Rem. Sens. 63(5):523-533.
    • (1997) Photogramm. Eng. Rem. Sens. , vol.63 , Issue.5 , pp. 523-533
    • Bruzzone, L.1    Conese, C.2    Maselli, F.3    Roli, F.4
  • 4
    • 0024924674 scopus 로고
    • Automatic labeling and characterization of objects using artificial neural networks
    • CAMPBELL, W.J., S.E. HILL, AND R.F. CROMP. 1989. Automatic labeling and characterization of objects using artificial neural networks. Telemat. Informat. 6:259-271.
    • (1989) Telemat. Informat. , vol.6 , pp. 259-271
    • Campbell, W.J.1    Hill, S.E.2    Cromp, R.F.3
  • 7
    • 0027525734 scopus 로고
    • Artificial neural networks for land cover classification and mapping
    • CIVCO, D.F. 1993. Artificial neural networks for land cover classification and mapping. Internat. J. Geog. Inf. Syst. 7:173-186.
    • (1993) Internat. J. Geog. Inf. Syst. , vol.7 , pp. 173-186
    • Civco, D.F.1
  • 8
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classification of remote sensed data
    • CONGALTON, R.G. 1991. A review of assessing the accuracy of classification of remote sensed data. Rem. Sens. Environ. 37:35-46.
    • (1991) Rem. Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 9
    • 0020968740 scopus 로고
    • Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques
    • CONGALTON, R.G., R.G. ODERWALD, AND R.A. MEAD. 1983. Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. Photogramm. Eng. Rem. Sens. 49(12): 1671-1678.
    • (1983) Photogramm. Eng. Rem. Sens. , vol.49 , Issue.12 , pp. 1671-1678
    • Congalton, R.G.1    Oderwald, R.G.2    Mead, R.A.3
  • 14
    • 0032458753 scopus 로고    scopus 로고
    • Computational neural networks: A new paradigm for spatial analysis
    • FISCHER, M.M. 1997. Computational neural networks: a new paradigm for spatial analysis. Environ. Plan. A 29:1873-1891.
    • (1997) Environ. Plan. A , vol.29 , pp. 1873-1891
    • Fischer, M.M.1
  • 16
    • 0033005338 scopus 로고    scopus 로고
    • The continuum of classification fuzziness in thematic mapping
    • FOODY, G.M. 1999. The continuum of classification fuzziness in thematic mapping. Photogramm. Eng. Rem. Sens. 65(4):443-451.
    • (1999) Photogramm. Eng. Rem. Sens. , vol.65 , Issue.4 , pp. 443-451
    • Foody, G.M.1
  • 17
    • 0028560774 scopus 로고
    • Classification of remotely sensed data by an artificial neural network: Issues related to training data characteristics
    • FOODY, G.M., M.B. MCCULLOCH, AND W.B. YATES. 1995. Classification of remotely sensed data by an artificial neural network: issues related to training data characteristics. Photogramm. Eng. Rem. Sens. 61(4):391-401.
    • (1995) Photogramm. Eng. Rem. Sens. , vol.61 , Issue.4 , pp. 391-401
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 19
    • 0030302935 scopus 로고    scopus 로고
    • Mapping ecological land systems and classification uncertainties from digital elevation and forest cover data using neural networks
    • GONG, P., R. PU, AND J. CHEN. 1996. Mapping ecological land systems and classification uncertainties from digital elevation and forest cover data using neural networks. Photogramm. Eng. Rem. Sens.62(11):1249-1260.
    • (1996) Photogramm. Eng. Rem. Sens. , vol.62 , Issue.11 , pp. 1249-1260
    • Gong, P.1    Pu, R.2    Chen, J.3
  • 20
    • 0028167349 scopus 로고
    • Theory and methods for accuracy assessment of thematic maps using fuzzy sets
    • GOPAL, S. AND C. WOODCOCK. 1994. Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogramm. Eng. Rem. Sens.60:181-188.
    • (1994) Photogramm. Eng. Rem. Sens. , vol.60 , pp. 181-188
    • Gopal, S.1    Woodcock, C.2
  • 22
    • 0025573206 scopus 로고
    • Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification
    • HEPNER, G.F., T. LOGAN, N. RITTER, AND N. BRYANT. 1990. Artificial neural network classification using a minimal training set: Comparison to conventional supervised classification. Photogramm. Eng. Rem. Sens.56:469-473.
    • (1990) Photogramm. Eng. Rem. Sens. , vol.56 , pp. 469-473
    • Hepner, G.F.1    Logan, T.2    Ritter, N.3    Bryant, N.4
  • 25
    • 0023486388 scopus 로고
    • Correct formulation of the Kappa coefficient agreement
    • HUDSON, W.D., AND C.W. RAMM. 1987. Correct formulation of the Kappa coefficient agreement. Photogramm. Eng. Rem. Sens.53(4):421-422.
    • (1987) Photogramm. Eng. Rem. Sens. , vol.53 , Issue.4 , pp. 421-422
    • Hudson, W.D.1    Ramm, C.W.2
  • 27
    • 0024901577 scopus 로고
    • Cloud classification from satellite data using a fuzzy sets algorithm: A polar example
    • KEY, J.R., J.A. MASLANIK, AND R.G. BARRY. 1989a. Cloud classification from satellite data using a fuzzy sets algorithm: A polar example. Internat. J. Rem. Sens.10:1823-1842.
    • (1989) Internat. J. Rem. Sens. , vol.10 , pp. 1823-1842
    • Key, J.R.1    Maslanik, J.A.2    Barry, R.G.3
  • 28
    • 0024855681 scopus 로고
    • Classification of merged AVHRR and SMMR arctic data with neural networks
    • KEY, J.R., A.MASLANIK, AND A.J.SCHWEIGER. 1989b. Classification of merged AVHRR and SMMR arctic data with neural networks. Photogramm. Eng. Rem. Sens.55(9):1331-1338.
    • (1989) Photogramm. Eng. Rem. Sens. , vol.55 , Issue.9 , pp. 1331-1338
    • Key, J.R.1    Maslanik, A.2    Schweiger, A.J.3
  • 29
    • 0035095938 scopus 로고    scopus 로고
    • Introducing new indices for accuracy evaluation of classified image representing semi-natural woodland environments
    • KOUKOULAS, S., AND G.A. BLACKBURN. 2001. Introducing new indices for accuracy evaluation of classified image representing semi-natural woodland environments. Photogramm. Eng. Rem. Sens. 67(4):449-510.
    • (2001) Photogramm. Eng. Rem. Sens. , vol.67 , Issue.4 , pp. 449-510
    • Koukoulas, S.1    Blackburn, G.A.2
  • 30
    • 0043251828 scopus 로고    scopus 로고
    • MIT Lincoln Laboratory
    • KUKOLOCH, L., AND R. LIPPMANN. 1999. LNKnet User's Guide. MIT Lincoln Laboratory. (The software and the manual can be downloaded at http://www.ll.mit.edu/IST).
    • (1999) LNKnet User's Guide
    • Kukoloch, L.1    Lippmann, R.2
  • 31
    • 0043076914 scopus 로고
    • Habitat mapping and interpretation in New England
    • 28 p.
    • LEAK, W.B. 1982. Habitat mapping and interpretation in New England. USDA For. Serv. Res. Pap. NE-496. 28 p.
    • (1982) USDA For. Serv. Res. Pap. , vol.NE-496
    • Leak, W.B.1
  • 32
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modeling: An introduction
    • LEK, S., AND J.F. GUEGAN. 1999. Artificial neural networks as a tool in ecological modeling: An introduction. Ecol. Model. 120:65-73.
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 33
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • LIPPMANN, R.P. 1987. An introduction to computing with neural nets. IEEE ASSP Mag. April: 4-22.
    • (1987) IEEE ASSP Mag. , vol.APRIL , pp. 4-22
    • Lippmann, R.P.1
  • 35
    • 0035568382 scopus 로고    scopus 로고
    • FRBF: A fuzzy radial basis function network
    • MITRA, S., AND J. BASAK. 2001. FRBF: A fuzzy radial basis function network. Neural Comput. Appl. 10:244-252.
    • (2001) Neural Comput. Appl. , vol.10 , pp. 244-252
    • Mitra, S.1    Basak, J.2
  • 36
    • 0033578367 scopus 로고    scopus 로고
    • Radial basis function networks with partially classified data
    • MORLINI, I. 1999. Radial basis function networks with partially classified data. Ecol. Model. 120:109-118.
    • (1999) Ecol. Model. , vol.120 , pp. 109-118
    • Morlini, I.1
  • 37
    • 0032773999 scopus 로고    scopus 로고
    • Exploring spatial non-stationarity with radial basis function neural networks
    • MURNION, S. 1999. Exploring spatial non-stationarity with radial basis function neural networks.Geogr. Environ. Model. 3(1):35-45.
    • (1999) Geogr. Environ. Model. , vol.3 , Issue.1 , pp. 35-45
    • Murnion, S.1
  • 38
    • 0001896046 scopus 로고
    • A comparative study of the practical characteristics of neural network and conventional pattern classifiers
    • R. Lippmann, R., et al. (eds.). Morgan Kaufman, San Mateo, California
    • NG, K., AND R.P. LIPPMANN, 1991. A comparative study of the practical characteristics of neural network and conventional pattern classifiers. P. 970-976 in Neural Information Proc.Systems 3. R. Lippmann, R., et al. (eds.). Morgan Kaufman, San Mateo, California.
    • (1991) Neural Information Proc.Systems , vol.3 , pp. 970-976
    • Ng, K.1    Lippmann, R.P.2
  • 40
    • 0030618062 scopus 로고    scopus 로고
    • The effect of neural-network structure on a multispectral land-use/land-cover classification
    • PAOLA, J.D., AND R.A. SCHOWENGERDT. 1997. The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogramm. Eng. Rem. Sens. 63(5):535-554.
    • (1997) Photogramm. Eng. Rem. Sens. , vol.63 , Issue.5 , pp. 535-554
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 41
    • 0041748895 scopus 로고
    • Multisource image classification II: An empirical comparison of evidential reasoning, linear discriminant analysis, and maximum likelihood algorithms for alpine land cover classification
    • PEDDLE, D.R., G.M. FOODY, A. ZHANG, S.E. FRANKLIN, AND E.F. LEDREW. 1994. Multisource image classification II: An empirical comparison of evidential reasoning, linear discriminant analysis, and maximum likelihood algorithms for alpine land cover classification. Can. J. Rem. Sens. 20:397-408.
    • (1994) Can. J. Rem. Sens. , vol.20 , pp. 397-408
    • Peddle, D.R.1    Foody, G.M.2    Zhang, A.3    Franklin, S.E.4    Ledrew, E.F.5
  • 42
    • 16344393214 scopus 로고    scopus 로고
    • Recent applications of artificial neural networks in forest resource management: An overview
    • Corte, U., and M. Sanchez-Marre (eds.). Tech. Rep. WS-99-07, AAAI Press, Menlo Park, California
    • PENG, C., AND X. WEN. 1999. Recent applications of artificial neural networks in forest resource management: an overview. P. 15-22 in Environmental Decision Support Systems and Artificial Intelligence, Corte, U., and M. Sanchez-Marre (eds.). Tech. Rep. WS-99-07, AAAI Press, Menlo Park, California.
    • (1999) Environmental Decision Support Systems and Artificial Intelligence , pp. 15-22
    • Peng, C.1    Wen, X.2
  • 44
    • 0025573169 scopus 로고
    • Application of an artificial neural network to land-cover classification of thematic mapper imagery
    • RITTER, N.D. AND G.F. HEPNER. 1990. Application of an artificial neural network to land-cover classification of thematic mapper imagery. Comput. Geosci. 16(6):873-880.
    • (1990) Comput. Geosci. , vol.16 , Issue.6 , pp. 873-880
    • Ritter, N.D.1    Hepner, G.F.2
  • 45
    • 0022927129 scopus 로고
    • A coefficient of agreement as a measure of thematic classification accuracy
    • ROSENFIELD, G.H., AND K. FITZPATRICK-LINS. 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Rem. Sens. 52:223-227.
    • (1986) Photogramm. Eng. Rem. Sens. , vol.52 , pp. 223-227
    • Rosenfield, G.H.1    Fitzpatrick-Lins, K.2
  • 46
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • Rumelhart, D.E., J.L. McClelland, and PDP Research Group (eds.). The MIT Press: Massachusetts
    • RUMELHART, D.E., G.E. HINTON, AND R.J. WILLIAMS. 1987. Learning internal representations by error propagation. P. 318-362 in Parallel Distributed Processing-Explorations in the Microstructure of Cognition, Vol.1. Rumelhart, D.E., J.L. McClelland, and PDP Research Group (eds.). The MIT Press: Massachusetts.
    • (1987) Parallel Distributed Processing-Explorations in the Microstructure of Cognition , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 48
    • 0042750714 scopus 로고
    • Land cover classification of Landsat images using problem-adapted artificial neural networks
    • Binaghi, E., et al. (eds.). World Scientific, Milano, Italy
    • SCHWAIGER, R., R. HUBER, AND H.A. MAYER. 1995. Land cover classification of Landsat images using problem-adapted artificial neural networks. P. 33-41 in Proc. of Soft Comput. in Rem. Sens. Data Anal. Binaghi, E., et al. (eds.). World Scientific, Milano, Italy.
    • (1995) Proc. of Soft Comput. in Rem. Sens. Data Anal. , pp. 33-41
    • Schwaiger, R.1    Huber, R.2    Mayer, H.A.3
  • 49
    • 0034205618 scopus 로고    scopus 로고
    • Empirical data modeling in software engineering using radial basis functions
    • SHIN, M., AND A.L. GOEL. 2000. Empirical data modeling in software engineering using radial basis functions. IEEE Transact. on Software Eng. 26:1-10.
    • (2000) IEEE Transact. on Software Eng. , vol.26 , pp. 1-10
    • Shin, M.1    Goel, A.L.2
  • 50
    • 0024163875 scopus 로고
    • Forest mapping accuracies are improved using a supervised non-parametric classifier
    • SKIDMORE, A.K., AND B.J. TURNER. 1988. Forest mapping accuracies are improved using a supervised non-parametric classifier. Photogramm. Eng. Rem. Sens. 54:1415-1421.
    • (1988) Photogramm. Eng. Rem. Sens. , vol.54 , pp. 1415-1421
    • Skidmore, A.K.1    Turner, B.J.2
  • 52
    • 0043251862 scopus 로고    scopus 로고
    • Adaptation of FIBER for forest inventory and analysis growth projections in the state of Maine
    • Hansen, M., and T. Burk (eds.). USDA For. Serv. Gen. Tech. Rep. NC-212
    • st century. Hansen, M., and T. Burk (eds.). USDA For. Serv. Gen. Tech. Rep. NC-212.
    • (1998) st Century , pp. 580-586
    • Solomon, D.S.1    Brann, T.B.2    Caldwell, L.E.3
  • 53
    • 0028731186 scopus 로고
    • Recent application of neural networks for spatial data handling
    • SUI, D.Z. 1994. Recent application of neural networks for spatial data handling. Can. J. Rem Sens. 20:368-380.
    • (1994) Can. J. Rem. Sens. , vol.20 , pp. 368-380
    • Sui, D.Z.1
  • 54
    • 0025402179 scopus 로고
    • Fuzzy supervised classification of remote sensing images
    • WANG, F. 1990. Fuzzy supervised classification of remote sensing images. IEEE Transact. on Geosci. and Rem.Sens. 28:194-201.
    • (1990) IEEE Transact. on Geosci. and Rem.Sens. , vol.28 , pp. 194-201
    • Wang, F.1
  • 55
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • WARNER, B., AND M. MISRA. 1996. Understanding neural networks as statistical tools. Am. Stat. 50(4):284-293.
    • (1996) Am. Stat. , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 56
    • 0035048764 scopus 로고    scopus 로고
    • Fully-fuzzy supervised classification of suburban land cover from remotely sensed imagery: Statistical and artificial neural network approaches
    • ZHANG, J., AND G.M. FOODY. 2001. Fully-fuzzy supervised classification of suburban land cover from remotely sensed imagery: statistical and artificial neural network approaches. Internat. J. Rem. Sens. 22(4):615-628.
    • (2001) Internat. J. Rem. Sens , vol.22 , Issue.4 , pp. 615-628
    • Zhang, J.1    Foody, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.