메뉴 건너뛰기




Volumn 10, Issue 1, 1999, Pages 51-80

Generalization bounds for function approximation from scattered noisy data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033480745     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1018966213079     Document Type: Article
Times cited : (54)

References (46)
  • 1
    • 0000270806 scopus 로고
    • Technical Report 59, Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL March
    • A.R. Barron, Approximation and estimation bounds for artificial neural networks, Technical Report 59, Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, IL (March 1991).
    • (1991) Approximation and Estimation Bounds for Artificial Neural Networks
    • Barron, A.R.1
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • A.R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inform. Theory 39(3) (1993) 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 930-945
    • Barron, A.R.1
  • 4
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • A.R. Barron, Approximation and estimation bounds for artificial neural networks, Machine Learning 14 (1994) 115-133.
    • (1994) Machine Learning , vol.14 , pp. 115-133
    • Barron, A.R.1
  • 6
    • 0027602489 scopus 로고
    • Hinging hyperplanes for regression, classification, and function approximation
    • L. Breiman, Hinging hyperplanes for regression, classification, and function approximation, IEEE Trans. Inform. Theory 39(3) (1993) 999-1013.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.3 , pp. 999-1013
    • Breiman, L.1
  • 7
    • 0004041002 scopus 로고
    • Technical Report, University of California, Berkeley, CA
    • L. Breiman, Stacked regression, Technical Report, University of California, Berkeley, CA (1993).
    • (1993) Stacked Regression
    • Breiman, L.1
  • 8
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko, Approximation by superposition of a sigmoidal function, Math. Control Systems Signals 2(4) (1989) 303-314.
    • (1989) Math. Control Systems Signals , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0001990386 scopus 로고
    • Degree of nonlinear approximation
    • eds. C.K. Chui, L.L. Schumaker and D.J. Ward Academic Press, New York
    • R.A. DeVore, Degree of nonlinear approximation, in: Approximation Theory, Vol. 6, eds. C.K. Chui, L.L. Schumaker and D.J. Ward (Academic Press, New York, 1991) pp. 175-201.
    • (1991) Approximation Theory , vol.6 , pp. 175-201
    • DeVore, R.A.1
  • 11
    • 33645941727 scopus 로고
    • Nonlinear n-widths in Besov spaces
    • eds. C.K. Chui, L.L. Schumaker and D.J. Ward Academic Press, New York
    • R.A. DeVore and X.M. Yu, Nonlinear n-widths in Besov spaces, in: Approximation Theory, Vol. 6, eds. C.K. Chui, L.L. Schumaker and D.J. Ward (Academic Press, New York, 1991) pp. 203-206.
    • (1991) Approximation Theory , vol.6 , pp. 203-206
    • DeVore, R.A.1    Yu, X.M.2
  • 12
    • 0001605679 scopus 로고
    • Universal Donsker classes and metric entropy
    • R.M. Dudley, Universal Donsker classes and metric entropy, Ann. Probab. 14(4) (1987) 1306-1326.
    • (1987) Ann. Probab. , vol.14 , Issue.4 , pp. 1306-1326
    • Dudley, R.M.1
  • 13
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 14
    • 0002370522 scopus 로고
    • On some extensions of radial basis functions and their applications in artificial intelligence
    • F. Girosi, On some extensions of radial basis functions and their applications in artificial intelligence, Comput. Math. Appl. 24(12) (1992) 61-80.
    • (1992) Comput. Math. Appl. , vol.24 , Issue.12 , pp. 61-80
    • Girosi, F.1
  • 15
    • 0003085388 scopus 로고
    • Rates of convergence for radial basis functions and neural networks
    • ed. R.J. Mammone Chapman and Hall, London
    • F. Girosi and G. Anzellotti, Rates of convergence for radial basis functions and neural networks, in: Artificial Neural Networks for Speech and Vision, ed. R.J. Mammone (Chapman and Hall, London, 1993) pp. 97-113.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 97-113
    • Girosi, F.1    Anzellotti, G.2
  • 17
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • D. Haussler, Decision theoretic generalizations of the PAC model for neural net and other learning applications, Inform. Comput. 100(1) (1992) 78-150.
    • (1992) Inform. Comput. , vol.100 , Issue.1 , pp. 78-150
    • Haussler, D.1
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0001307541 scopus 로고
    • Degree of approximation results for feedforward network approximating unknown functions and their derivatives
    • K. Hornik, M. Stinchcombe, H. White and P. Auer, Degree of approximation results for feedforward network approximating unknown functions and their derivatives, Neural Comput. 6 (1994) 1262-127.
    • (1994) Neural Comput. , vol.6 , pp. 1262-2127
    • Hornik, K.1    Stinchcombe, M.2    White, H.3    Auer, P.4
  • 20
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for Projection Pursuit Regression and neural network training
    • L.K. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for Projection Pursuit Regression and neural network training, Ann. Statist. 20(1) (1992) 608-613.
    • (1992) Ann. Statist. , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 21
    • 0043008734 scopus 로고
    • Spaces of differentiable functions of several variables
    • ed. S.M. Nikol'skii Springer, Berlin
    • L.D. Kudryavtsev and S.M. Nikol'skii, Spaces of differentiable functions of several variables, in: Analysis III, ed. S.M. Nikol'skii (Springer, Berlin, 1991).
    • (1991) Analysis III
    • Kudryavtsev, L.D.1    Nikol'skii, S.M.2
  • 22
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • April
    • R.P. Lippmann, An introduction to computing with neural nets, IEEE ASSP Mag. (April 1987) 4-22.
    • (1987) IEEE ASSP Mag. , pp. 4-22
    • Lippmann, R.P.1
  • 23
    • 0042507805 scopus 로고
    • Metric entropy, widths, and superposition of functions
    • G.G. Lorentz, Metric entropy, widths, and superposition of functions, Amer. Math. Monthly 69 (1962) 469-485.
    • (1962) Amer. Math. Monthly , vol.69 , pp. 469-485
    • Lorentz, G.G.1
  • 25
    • 0000194429 scopus 로고
    • Degree of approximation by neural and translation networks with a single hidden layer
    • H. Mhaskar and C. Micchelli, Degree of approximation by neural and translation networks with a single hidden layer, Adv. Appl. Math. 16 (1995) 151-183.
    • (1995) Adv. Appl. Math. , vol.16 , pp. 151-183
    • Mhaskar, H.1    Micchelli, C.2
  • 26
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H.N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Comput. 8 (1996) 164-167.
    • (1996) Neural Comput. , vol.8 , pp. 164-167
    • Mhaskar, H.N.1
  • 27
    • 0006863682 scopus 로고
    • Approximation properties of a multilayered feedforward artificial neural network
    • H.N. Mhaskar, Approximation properties of a multilayered feedforward artificial neural network, Adv. Comput. Math. 1 (1993) 61-80.
    • (1993) Adv. Comput. Math. , vol.1 , pp. 61-80
    • Mhaskar, H.N.1
  • 28
    • 0000358945 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • H.N. Mhaskar and C.A. Micchelli, Approximation by superposition of a sigmoidal function, Adv. Appl. Math. 13 (1992) 350-373.
    • (1992) Adv. Appl. Math. , vol.13 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 29
    • 0028424688 scopus 로고
    • Dimension independent bounds on the degree of approximation by neural networks
    • H.N. Mhaskar and C.A. Micchelli, Dimension independent bounds on the degree of approximation by neural networks, IBM J. Res. Devel. 38 (1994) 277-284.
    • (1994) IBM J. Res. Devel. , vol.38 , pp. 277-284
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 30
    • 34250122797 scopus 로고
    • Interpolation of scattered data: Distance matrices and conditionally positive definite functions
    • C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986) 11-22.
    • (1986) Constr. Approx. , vol.2 , pp. 11-22
    • Micchelli, C.A.1
  • 31
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody and C. Darken, Fast learning in networks of locally-tuned processing units, Neural Comput. 1(2) (1989) 281-294.
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 32
    • 0030221021 scopus 로고    scopus 로고
    • An integral representation of functions using three layered networks and their approximation bounds
    • N. Murata, An integral representation of functions using three layered networks and their approximation bounds, Neural Networks 9 (1996) 947-956.
    • (1996) Neural Networks , vol.9 , pp. 947-956
    • Murata, N.1
  • 34
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi, Networks for approximation and learning, Proc. IEEE 78(9) (1990).
    • (1990) Proc. IEEE , vol.78 , Issue.9
    • Poggio, T.1    Girosi, F.2
  • 35
    • 0025056697 scopus 로고
    • Regularization algorithms for learning that are equivalent to multilayer networks
    • T. Poggio and F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks, Science 247 (1990) 978-982.
    • (1990) Science , vol.247 , pp. 978-982
    • Poggio, T.1    Girosi, F.2
  • 37
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • eds. J.C. Mason and M.G. Cox Clarendon Press, Oxford
    • M.J.D. Powell, Radial basis functions for multivariable interpolation: a review, in: Algorithms for Approximation, eds. J.C. Mason and M.G. Cox (Clarendon Press, Oxford, 1987).
    • (1987) Algorithms for Approximation
    • Powell, M.J.D.1
  • 42
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequences of events to their probabilities
    • V.N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequences of events to their probabilities, Theory Probab. Appl. 17(2) (1971) 264-280.
    • (1971) Theory Probab. Appl. , vol.17 , Issue.2 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 43
    • 0041548213 scopus 로고
    • The necessary and sufficient conditions for the uniform convergence of averages to their expected values
    • V.N. Vapnik and A.Y. Chervonenkis, The necessary and sufficient conditions for the uniform convergence of averages to their expected values, Teor. Veroyatnost. i Primenen. 26(3) (1981) 543-564.
    • (1981) Teor. Veroyatnost. i Primenen. , vol.26 , Issue.3 , pp. 543-564
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 44
    • 0000864140 scopus 로고
    • The necessary and sufficient conditions for consistency in the empirical risk minimization method
    • V.N. Vapnik and A. Y. Chervonenkis, The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis 1(3) (1991) 283-305.
    • (1991) Pattern Recognition and Image Analysis , vol.1 , Issue.3 , pp. 283-305
    • Vapnik, V.N.1    Chervonenkis, A.Y.2
  • 45
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer perceptrons can learn arbitrary mappings
    • H. White, Connectionist nonparametric regression: Multilayer perceptrons can learn arbitrary mappings, Neural Networks 3 (1990) 535-549.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.