메뉴 건너뛰기




Volumn , Issue , 2003, Pages 296-305

Discriminative Parameter Learning of General Bayesian Network Classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; BENCHMARKING; CLASSIFICATION (OF INFORMATION); MAXIMUM LIKELIHOOD ESTIMATION; OPTIMIZATION; STANDARDS;

EID: 0345097610     PISSN: 10636730     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (19)

References (26)
  • 1
    • 0345438737 scopus 로고    scopus 로고
    • Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers
    • R. Greiner and W. Zhou. Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers. AAAI, 2002.
    • (2002) AAAI
    • Greiner, R.1    Zhou, W.2
  • 2
    • 0344145220 scopus 로고    scopus 로고
    • Learning Bayesian Belief Network Classifiers: Algorithms and System
    • J. Cheng and R. Greiner. Learning Bayesian Belief Network Classifiers: Algorithms and System, CSCS101, 2001.
    • (2001) CSCS101
    • Cheng, J.1    Greiner, R.2
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from the data
    • G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from the data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 8
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29:213-244, 1997.
    • (1997) Machine Learning , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 10
    • 0002460150 scopus 로고
    • The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
    • Springer Verlag, Berlin
    • I. Beinlich, H. Suermondt, R. Chavez, and G. Cooper. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. AIME-89, pages 247-256. Springer Verlag, Berlin, 1989.
    • (1989) AIME-89 , pp. 247-256
    • Beinlich, I.1    Suermondt, H.2    Chavez, R.3    Cooper, G.4
  • 12
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory, 14:462-467, 1968.
    • (1968) IEEE Trans. on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 14
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian network from data: An information-theory based approach
    • J. Cheng, R. Greiner and J. Kelly et al. Learning Bayesian network from data: An information-theory based approach. Artificial Intelligence Journal 137:43-90, 2002.
    • (2002) Artificial Intelligence Journal , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3
  • 15
    • 2342601231 scopus 로고    scopus 로고
    • Learning Bayesian Nets that Perform Well
    • August
    • R. Greiner, A. Grove and D. Schuurmans. Learning Bayesian Nets that Perform Well. UA197, August 1997.
    • (1997) UA197
    • Greiner, R.1    Grove, A.2    Schuurmans, D.3
  • 17
    • 0012352869 scopus 로고    scopus 로고
    • Algorithms for maximum-likelihood logistic regression
    • CMU
    • T. Minka, Algorithms for maximum-likelihood logistic regression. Statistics Technical Report 758, CMU, 2001.
    • (2001) Statistics Technical Report , vol.758
    • Minka, T.1
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97:1-2, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 1-2
    • Kohavi, R.1    John, G.2
  • 21
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI, (pp. 1022-1027), 1993.
    • (1993) IJCAI , pp. 1022-1027
    • Fayyad, U.1    Irani, K.2
  • 23
    • 1942418620 scopus 로고    scopus 로고
    • On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naïve Bayes
    • A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naïve Bayes, NIPS 15, 2003.
    • (2003) NIPS , vol.15
    • Ng, A.1    Jordan, M.2
  • 25
    • 0345438733 scopus 로고    scopus 로고
    • Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood
    • Department of Computer Science and Engineering, University of Washington
    • D. Grossman and P. Domingos. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood, Department of Computer Science and Engineering, University of Washington, Technical Report, 2003.
    • (2003) Technical Report
    • Grossman, D.1    Domingos, P.2
  • 26
    • 84880794162 scopus 로고    scopus 로고
    • AUC: A Statistically Consistent and more Discriminating Measure than Accuracy
    • C. Ling, J. Huang, and H. Zhang. AUC: a Statistically Consistent and more Discriminating Measure than Accuracy. Proceedings of IJCAI 2003.
    • (2003) Proceedings of IJCAI
    • Ling, C.1    Huang, J.2    Zhang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.