-
1
-
-
0345438737
-
Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers
-
R. Greiner and W. Zhou. Structural Extension to Logistic Regression: Discriminative Parameter Learning of Belief Net Classifiers. AAAI, 2002.
-
(2002)
AAAI
-
-
Greiner, R.1
Zhou, W.2
-
2
-
-
0344145220
-
Learning Bayesian Belief Network Classifiers: Algorithms and System
-
J. Cheng and R. Greiner. Learning Bayesian Belief Network Classifiers: Algorithms and System, CSCS101, 2001.
-
(2001)
CSCS101
-
-
Cheng, J.1
Greiner, R.2
-
6
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from the data
-
G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from the data. Machine Learning, 9:309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
8
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29:213-244, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
10
-
-
0002460150
-
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
-
Springer Verlag, Berlin
-
I. Beinlich, H. Suermondt, R. Chavez, and G. Cooper. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. AIME-89, pages 247-256. Springer Verlag, Berlin, 1989.
-
(1989)
AIME-89
, pp. 247-256
-
-
Beinlich, I.1
Suermondt, H.2
Chavez, R.3
Cooper, G.4
-
12
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Information Theory, 14:462-467, 1968.
-
(1968)
IEEE Trans. on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
14
-
-
0036567524
-
Learning Bayesian network from data: An information-theory based approach
-
J. Cheng, R. Greiner and J. Kelly et al. Learning Bayesian network from data: An information-theory based approach. Artificial Intelligence Journal 137:43-90, 2002.
-
(2002)
Artificial Intelligence Journal
, vol.137
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
-
15
-
-
2342601231
-
Learning Bayesian Nets that Perform Well
-
August
-
R. Greiner, A. Grove and D. Schuurmans. Learning Bayesian Nets that Perform Well. UA197, August 1997.
-
(1997)
UA197
-
-
Greiner, R.1
Grove, A.2
Schuurmans, D.3
-
17
-
-
0012352869
-
Algorithms for maximum-likelihood logistic regression
-
CMU
-
T. Minka, Algorithms for maximum-likelihood logistic regression. Statistics Technical Report 758, CMU, 2001.
-
(2001)
Statistics Technical Report
, vol.758
-
-
Minka, T.1
-
20
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, 97:1-2, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 1-2
-
-
Kohavi, R.1
John, G.2
-
21
-
-
0002593344
-
Multi-interval discretization of continuous-valued attributes for classification learning
-
U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification learning. In IJCAI, (pp. 1022-1027), 1993.
-
(1993)
IJCAI
, pp. 1022-1027
-
-
Fayyad, U.1
Irani, K.2
-
23
-
-
1942418620
-
On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naïve Bayes
-
A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers: A Comparison of Logistic Regression and Naïve Bayes, NIPS 15, 2003.
-
(2003)
NIPS
, vol.15
-
-
Ng, A.1
Jordan, M.2
-
25
-
-
0345438733
-
Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood
-
Department of Computer Science and Engineering, University of Washington
-
D. Grossman and P. Domingos. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood, Department of Computer Science and Engineering, University of Washington, Technical Report, 2003.
-
(2003)
Technical Report
-
-
Grossman, D.1
Domingos, P.2
-
26
-
-
84880794162
-
AUC: A Statistically Consistent and more Discriminating Measure than Accuracy
-
C. Ling, J. Huang, and H. Zhang. AUC: a Statistically Consistent and more Discriminating Measure than Accuracy. Proceedings of IJCAI 2003.
-
(2003)
Proceedings of IJCAI
-
-
Ling, C.1
Huang, J.2
Zhang, H.3
|