메뉴 건너뛰기




Volumn 21, Issue 10, 2005, Pages 2279-2286

Prediction of subcellular localization using sequence-biased recurrent networks

Author keywords

[No Author keywords available]

Indexed keywords

PEPTIDE;

EID: 19544372994     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/bti372     Document Type: Article
Times cited : (120)

References (28)
  • 1
    • 0034330457 scopus 로고    scopus 로고
    • Traffic jam: A compendium of human diseases that affect intracellular transport processes
    • Aridor,M. and Hannan,L.A. (2000) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic, 1, 836-851.
    • (2000) Traffic , vol.1 , pp. 836-851
    • Aridor, M.1    Hannan, L.A.2
  • 2
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi,P. et al. (1999) Exploiting the past and the future in protein secondary structure prediction. Bioinformatics, 15, 937-946.
    • (1999) Bioinformatics , vol.15 , pp. 937-946
    • Baldi, P.1
  • 3
    • 15344351555 scopus 로고    scopus 로고
    • Improved access to sequential motifs: A note on the architectural bias of recurrent networks
    • Bodén,M. and Hawkins,J. (2005) Improved access to sequential motifs: a note on the architectural bias of recurrent networks. IEEE Trans. Neural Networks, 16.
    • (2005) IEEE Trans. Neural Networks , vol.16
    • Bodén, M.1    Hawkins, J.2
  • 4
    • 0036006486 scopus 로고    scopus 로고
    • Artificial neural network model for predicting protein subcellular location
    • Cai,Y.-D. et al. (2002) Artificial neural network model for predicting protein subcellular location. Comput. Chem., 26, 179-182.
    • (2002) Comput. Chem. , vol.26 , pp. 179-182
    • Cai, Y.-D.1
  • 5
    • 0037258751 scopus 로고    scopus 로고
    • Support vector machines for prediction of protein signal sequences and their cleavage sites
    • Cai,Y.-D. et al. (2003) Support vector machines for prediction of protein signal sequences and their cleavage sites. Peptides, 24, 159-161.
    • (2003) Peptides , vol.24 , pp. 159-161
    • Cai, Y.-D.1
  • 6
    • 0345305854 scopus 로고    scopus 로고
    • Prediction and classification of protein subcellular location-sequence-order effect and pseudo amino acid composition
    • Chou,K.C. and Cai,Y.D. (2003) Prediction and classification of protein subcellular location-sequence-order effect and pseudo amino acid composition. J. Cell. Biochem., 90, 1250-1260.
    • (2003) J. Cell Biochem. , vol.90 , pp. 1250-1260
    • Chou, K.C.1    Cai, Y.D.2
  • 7
    • 0034714135 scopus 로고    scopus 로고
    • A Bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome
    • Drawid,A. and Gerstein,M. (2000) A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome. J. Mol. Biol., 301, 1059-1075.
    • (2000) J. Mol. Biol. , vol.301 , pp. 1059-1075
    • Drawid, A.1    Gerstein, M.2
  • 8
    • 3042521098 scopus 로고    scopus 로고
    • Improved prediction of signal peptides: SignalP 3.0
    • Dyrlöv Bendtsen,J. et al. (2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 340, 783-795.
    • (2004) J. Mol. Biol. , vol.340 , pp. 783-795
    • Dyrlöv Bendtsen, J.1
  • 9
    • 0141872898 scopus 로고    scopus 로고
    • Predicting protein subcellular localisation from amino acid sequence information
    • Emanuelsson,O. (2002) Predicting protein subcellular localisation from amino acid sequence information. Brief. Bioinform., 3, 361-376.
    • (2002) Brief. Bioinform. , vol.3 , pp. 361-376
    • Emanuelsson, O.1
  • 10
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson,O. et al. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 300, 1005-1016.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1
  • 11
    • 0042326343 scopus 로고    scopus 로고
    • Recurrent neural networks with small weights implement definite memory machines
    • Hammer,B. and Tino,P. (2003) Recurrent neural networks with small weights implement definite memory machines. Neural Comp., 15, 1897-1929.
    • (2003) Neural Comp. , vol.15 , pp. 1897-1929
    • Hammer, B.1    Tino, P.2
  • 12
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua,S. and Sun,Z. (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 17, 721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 13
    • 2142657817 scopus 로고    scopus 로고
    • A combined transmembrane topology and signal peptide prediction method
    • Käll,L. et al. (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol., 338, 1027-1036.
    • (2004) J. Mol. Biol. , vol.338 , pp. 1027-1036
    • Käll, L.1
  • 14
    • 1542400030 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins using machine-learned classifiers
    • Lu,Z. et al. (2004) Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics, 20, 547-556.
    • (2004) Bioinformatics , vol.20 , pp. 547-556
    • Lu, Z.1
  • 15
    • 0016772212 scopus 로고
    • Comparison of predicted and observed secondary structure of t4 phage lysozyme
    • Matthews,B.W. (1975) Comparison of predicted and observed secondary structure of t4 phage lysozyme. Biochim. Biophys. Acta, 405, 442-451.
    • (1975) Biochim. Biophys. Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 16
    • 0344118117 scopus 로고    scopus 로고
    • Better prediction of sub-cellular localization by combining evolutionary and structural information
    • Nair,R. and Rost,B. (2003) Better prediction of sub-cellular localization by combining evolutionary and structural information. Proteins, 53, 917-930.
    • (2003) Proteins , vol.53 , pp. 917-930
    • Nair, R.1    Rost, B.2
  • 17
    • 0032972509 scopus 로고    scopus 로고
    • PSORT: A program for detecting sorting signals in proteins and predicting their subcellular localization
    • Nakai,K. and Horton,P. (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trend. Biochem. Sci., 24, 34-35.
    • (1999) Trend. Biochem. Sci. , vol.24 , pp. 34-35
    • Nakai, K.1    Horton, P.2
  • 18
    • 0030614959 scopus 로고    scopus 로고
    • Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites
    • Nielsen,H. et al. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng., 10, 1-6.
    • (1997) Protein Eng. , vol.10 , pp. 1-6
    • Nielsen, H.1
  • 19
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • Park,K.-J. and Kanehisa,M. (2003) Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics, 19, 1656-1663.
    • (2003) Bioinformatics , vol.19 , pp. 1656-1663
    • Park, K.-J.1    Kanehisa, M.2
  • 20
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary strucure in three and eight classes using recurrent neural networks and profiles
    • Pollastri,G. et al. (2002) Improving the prediction of protein secondary strucure in three and eight classes using recurrent neural networks and profiles. Proteins, 47, 228-235.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1
  • 21
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt,A. and Hubbard,T. (1998) Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res., 26, 2230-2236.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 24
    • 6044234526 scopus 로고    scopus 로고
    • Markovian architectural bias of recurrent neural networks
    • Tino,P. et al. (2004) Markovian architectural bias of recurrent neural networks. IEEE Trans. Neural Networks, 15, 6-15.
    • (2004) IEEE Trans. Neural Networks , vol.15 , pp. 6-15
    • Tino, P.1
  • 25
    • 0038060630 scopus 로고    scopus 로고
    • Intracellular sorting and transport of proteins
    • van Vliet,C. et al. (2003) Intracellular sorting and transport of proteins. Progr. Biophys. Mol. Biol., 83, 1-45.
    • (2003) Progr. Biophys. Mol. Biol. , vol.83 , pp. 1-45
    • van Vliet, C.1
  • 26
    • 0023046815 scopus 로고
    • A new method for predicting signal sequence cleavage sites
    • von Heijne,G. (1986) A new method for predicting signal sequence cleavage sites. Nucleic Acids Res., 14, 4683-4690.
    • (1986) Nucleic Acids Res. , vol.14 , pp. 4683-4690
    • von Heijne, G.1
  • 27
    • 1842455284 scopus 로고    scopus 로고
    • Disulfide connectivity prediction using recursive neural networks and evolutionary information
    • Vullo,A. and Frasconi,P. (2004) Disulfide connectivity prediction using recursive neural networks and evolutionary information. Bioinformatics, 20, 653-659.
    • (2004) Bioinformatics , vol.20 , pp. 653-659
    • Vullo, A.1    Frasconi, P.2
  • 28
    • 0034622642 scopus 로고    scopus 로고
    • The molecular evolution of signal peptides
    • Williams,E.J.B. et al. (2000) The molecular evolution of signal peptides. Gene, 253, 313-322.
    • (2000) Gene , vol.253 , pp. 313-322
    • Williams, E.J.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.