메뉴 건너뛰기




Volumn 20, Issue 4, 2004, Pages 547-556

Predicting subcellular localization of proteins using machine-learned classifiers

Author keywords

[No Author keywords available]

Indexed keywords

BACTERIAL PROTEIN; FUNGAL PROTEIN; PROTEIN; VEGETABLE PROTEIN;

EID: 1542400030     PISSN: 13674803     EISSN: 13674811     Source Type: Journal    
DOI: 10.1093/bioinformatics/btg447     Document Type: Article
Times cited : (301)

References (24)
  • 1
    • 84970866422 scopus 로고
    • Statistics notes: Diagnostic tests 1: Sensitivity and specificity
    • Altman,D.G. and Bland,J.M. (1994) Statistics notes: diagnostic tests 1: Sensitivity and specificity. BMJ, 308, 1552.
    • (1994) BMJ , vol.308 , pp. 1552
    • Altman, D.G.1    Bland, J.M.2
  • 2
    • 0003472470 scopus 로고
    • Pattern Classification and Scene Analysis
    • John Wiley & Sons
    • Duda,R.O. and Hart,P.E. (1973) Pattern Classification and Scene Analysis. John Wiley & Sons.
    • (1973)
    • Duda, R.O.1    Hart, P.E.2
  • 3
    • 1542559488 scopus 로고    scopus 로고
    • EBI European Bioinformatics Institute
    • EBI (2003) European Bioinformatics Institute. http://www.ebi.ac.uk/genomes
    • (2003)
  • 4
    • 0141872898 scopus 로고    scopus 로고
    • Predicting protein subcellular localization from amino acid sequence information
    • Emanuelsson,O. (2002) Predicting protein subcellular localization from amino acid sequence information. Brief. Bioinfo., 3, 361-376.
    • (2002) Brief. Bioinfo. , vol.3 , pp. 361-376
    • Emanuelsson, O.1
  • 5
    • 0034697980 scopus 로고    scopus 로고
    • Predicting subcellular localization of proteins based on their N-terminal amino acid sequence
    • Emanuelsson,O., Nielson,H., Brunak,S. and von Heijne,G. (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol., 300, 1005-1016.
    • (2000) J. Mol. Biol. , vol.300 , pp. 1005-1016
    • Emanuelsson, O.1    Nielson, H.2    Brunak, S.3    von Heijne, G.4
  • 7
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • Hua,S. and Sun,Z. (2001) Support vector machine approach for protein subcellular localization prediction. Bioinformatics, 17, 721-728.
    • (2001) Bioinformatics , vol.17 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 8
    • 0141466859 scopus 로고    scopus 로고
    • Better prediction of protein cellular localization sites with the k nearest neighbors classifier
    • AAAI Press
    • Horton,P. and Nakai,K. (1997) Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc. of the Fifth ISMB, AAAI Press, pp. 298-305.
    • (1997) Proc. of the Fifth ISMB , pp. 298-305
    • Horton, P.1    Nakai, K.2
  • 9
    • 0003847769 scopus 로고    scopus 로고
    • Speech and Language Processing
    • Prentice-Hall, NJ
    • Jurafsky,D. and Martin,J.H. (2000) Speech and Language Processing. Prentice-Hall, NJ.
    • (2000)
    • Jurafsky, D.1    Martin, J.H.2
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi,R. and John,G.H. (1997) Wrappers for feature subset selection. Artif. Intell., 97, 273-324.
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 11
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • Krogh,A., Larsson,B., von Hejne,G. and Sonnhammer, E. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol., 305, 567-580.
    • (2001) J. Mol. Biol. , vol.305 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    von Hejne, G.3    Sonnhammer, E.4
  • 12
    • 24844434567 scopus 로고    scopus 로고
    • Predicting protein subcellular localization from homologs using machine learning algorithms
    • MSc thesis, Department of Computing Science, University of Alberta
    • Lu,Z. (2003) Predicting protein subcellular localization from homologs using machine learning algorithms. MSc thesis, Department of Computing Science, University of Alberta.
    • (2003)
    • Lu, Z.1
  • 13
    • 0004255908 scopus 로고    scopus 로고
    • Machine Learning
    • McGraw-Hill, N.Y
    • Mitchell,T.M. (1997) Machine Learning. McGraw-Hill, N.Y.
    • (1997)
    • Mitchell, T.M.1
  • 14
    • 0036677029 scopus 로고    scopus 로고
    • Predicting protein cellular localization using a domain projection method
    • Mott,R., Schultz,J., Bork,P. and Ponting,C.P. (2002) Predicting protein cellular localization using a domain projection method. Genome Res., 12, 1168-1174.
    • (2002) Genome Res. , vol.12 , pp. 1168-1174
    • Mott, R.1    Schultz, J.2    Bork, P.3    Ponting, C.P.4
  • 15
    • 0344480548 scopus 로고    scopus 로고
    • Inferring subcellular localization through automated lexical analysis
    • Nair,R. and Rost,B. (2002) Inferring subcellular localization through automated lexical analysis. Bioinformatics, 18, S78-S86.
    • (2002) Bioinformatics , vol.18
    • Nair, R.1    Rost, B.2
  • 16
    • 0027105007 scopus 로고
    • A knowledge base for predicting protein localization sites in eukaryotic cells
    • Nakai,K. and Kanehisa,M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics, 14, 897-911.
    • (1992) Genomics , vol.14 , pp. 897-911
    • Nakai, K.1    Kanehisa, M.2
  • 18
    • 1542455034 scopus 로고    scopus 로고
    • PA-SUB
    • PA-SUB (2003).
    • (2003)
  • 19
    • 0032077533 scopus 로고    scopus 로고
    • Using neural networks for prediction of the subcellular location of proteins
    • Reinhardt,A. and Hubbard,T. (1998) Using neural networks for prediction of the subcellular location of proteins. Nucleic Acids Res., 26, 2230-2236.
    • (1998) Nucleic Acids Res. , vol.26 , pp. 2230-2236
    • Reinhardt, A.1    Hubbard, T.2
  • 20
    • 0004217877 scopus 로고
    • Information Retrieval
    • Butterworths, London (UK)
    • van Rijsbergen,K. (1979) Information Retrieval. Butterworths, London (UK).
    • (1979)
    • van Rijsbergen, K.1
  • 21
    • 0004067373 scopus 로고    scopus 로고
    • Using machine learning to improve information access
    • Ph.D. thesis, Computer Science Department, Stanford University, Stanford, CA
    • Sahami,M. (1999) Using machine learning to improve information access. Ph.D. thesis, Computer Science Department, Stanford University, Stanford, CA.
    • (1999)
    • Sahami, M.1
  • 22
  • 24
    • 1542769817 scopus 로고    scopus 로고
    • Proteome Analyst-transparent high-throughput protein annotation: Function, localization and custom predictors
    • International Conference on Machine Learning Workshop on Machine Learning in Bioinformatics (ICML-Bioinformatics) August 2003, Washington
    • Szafron,D., Lu,P., Greiner,R., Wishart,D., Lu,Z., Poulin,B., Eisner,R., Anvik,J. and MacDonell,C. (2003b) Proteome Analyst-transparent high-throughput protein annotation: Function, localization and custom predictors, International Conference on Machine Learning Workshop on Machine Learning in Bioinformatics (ICML-Bioinformatics) August 2003, Washington, 2-10.
    • (2003) , pp. 2-10
    • Szafron, D.1    Lu, P.2    Greiner, R.3    Wishart, D.4    Lu, Z.5    Poulin, B.6    Eisner, R.7    Anvik, J.8    MacDonell, C.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.