메뉴 건너뛰기




Volumn 15, Issue 8, 2003, Pages 1897-1929

Recurrent neural networks with small weights implement definite memory machines

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0042326343     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/08997660360675080     Document Type: Article
Times cited : (53)

References (55)
  • 3
    • 84898957627 scopus 로고    scopus 로고
    • For valid generalization, the size of the weights is more important than the size of the network
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Bartlett, P. L. (1997). For valid generalization, the size of the weights is more important than the size of the network. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9 (pp. 134-141). Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 134-141
    • Bartlett, P.L.1
  • 5
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum, E. B., & Haussler, D. (1989). What size net gives valid generalization? Neural Computation, 1(1), 151-165.
    • (1989) Neural Computation , vol.1 , Issue.1 , pp. 151-165
    • Baum, E.B.1    Haussler, D.2
  • 7
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 9
    • 0035273346 scopus 로고    scopus 로고
    • Simple strategies to encode tree automata in sigmoid recursive neural networks
    • Carrasco, R. C., & Forcada, M. L. (2001). Simple strategies to encode tree automata in sigmoid recursive neural networks. IEEE Transactions on Knowledge and Data Engineering, 13(2), 148-156.
    • (2001) IEEE Transactions on Knowledge and Data Engineering , vol.13 , Issue.2 , pp. 148-156
    • Carrasco, R.C.1    Forcada, M.L.2
  • 10
    • 0000046043 scopus 로고    scopus 로고
    • Towards a connectionist model of recursion in human linguistic performance
    • Christiansen, M. H., & Chater, N. (1999). Towards a connectionist model of recursion in human linguistic performance. Cognitive Science, 23, 157-205.
    • (1999) Cognitive Science , vol.23 , pp. 157-205
    • Christiansen, M.H.1    Chater, N.2
  • 11
  • 14
    • 0041707370 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks
    • Funahashi, K., & Nakamura, Y. (1993). Approximation of dynamical systems by continuous time recurrent neural networks. Neural Networks, 12, 831-864.
    • (1993) Neural Networks , vol.12 , pp. 831-864
    • Funahashi, K.1    Nakamura, Y.2
  • 15
    • 0029560406 scopus 로고
    • Learning a class of large finite state machines with a recurrent neural network
    • Giles, C. L., Lawrence, S., & Lin, T. (1995). Learning a class of large finite state machines with a recurrent neural network. Neural Networks, 8, 1359-1365.
    • (1995) Neural Networks , vol.8 , pp. 1359-1365
    • Giles, C.L.1    Lawrence, S.2    Lin, T.3
  • 17
    • 37249041177 scopus 로고
    • Design of a linguistic postprocessor using variable memory length Markov models
    • Montreal, Canada: IEEE Computer Society Press
    • Guyon, I., & Pereira, F. (1995). Design of a linguistic postprocessor using variable memory length Markov models. Proceedings of the International Conference on Document Analysis and Recognition (pp. 454-457). Montreal, Canada: IEEE Computer Society Press.
    • (1995) Proceedings of the International Conference on Document Analysis and Recognition , pp. 454-457
    • Guyon, I.1    Pereira, F.2
  • 18
    • 84956690333 scopus 로고    scopus 로고
    • On the generalization of Elman networks
    • W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicaud (Eds.), Berlin: Springer-Verlag
    • Hammer, B. (1997). On the generalization of Elman networks. In W. Gerstner, A. Germond, M. Hasler, & J.-D. Nicaud (Eds.), Artificial Neural Networks - ICANN'97 (pp. 409-414). Berlin: Springer-Verlag.
    • (1997) Artificial Neural Networks - ICANN'97 , pp. 409-414
    • Hammer, B.1
  • 21
    • 0002192516 scopus 로고
    • Decision theoretic generalizations of the PAC model for neural net and other learning applications
    • Haussler, D. (1992). Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100, 78-150.
    • (1992) Information and Computation , vol.100 , pp. 78-150
    • Haussler, D.1
  • 23
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Hornik, K. (1993). Some new results on neural network approximation. Neural Networks, 6, 1069-1072.
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 29
    • 0001949873 scopus 로고
    • Recurrent networks: State machines or iterated function systems?
    • Mahwah, NJ: Erlbaum
    • Kolen, J. F. (1994a). Recurrent networks: State machines or iterated function systems? In Proceedings of the 1993 Connectionist Models Summer School (pp. 203-210). Mahwah, NJ: Erlbaum.
    • (1994) Proceedings of the 1993 Connectionist Models Summer School , pp. 203-210
    • Kolen, J.F.1
  • 30
    • 0038087303 scopus 로고
    • The origin of clusters in recurrent neural state space
    • Mahwah, NJ: Erlbaum
    • Kolen, J. F. (1994b). The origin of clusters in recurrent neural state space. In Proceedings of the 1993 Connectionist Models Summer School (pp. 508-513). Mahwah, NJ: Erlbaum.
    • (1994) Proceedings of the 1993 Connectionist Models Summer School , pp. 508-513
    • Kolen, J.F.1
  • 32
    • 0028404750 scopus 로고
    • Discrete sequence prediction and its applications
    • Laird, P., & Saul, R. (1994). Discrete sequence prediction and its applications. Machine Learning, 15, 43-68.
    • (1994) Machine Learning , vol.15 , pp. 43-68
    • Laird, P.1    Saul, R.2
  • 33
    • 0001243798 scopus 로고    scopus 로고
    • On the effect of analog noise in discrete-time analog computation
    • Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-time analog computation. Neural Computation, 10(5), 1071-1095.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1071-1095
    • Maass, W.1    Orponen, P.2
  • 34
    • 0033110325 scopus 로고    scopus 로고
    • Analog neural nets with gaussian or other common noise distributions cannot recognize arbitrary regular languages
    • Maass, W., & Sontag, E. D. (1999). Analog neural nets with gaussian or other common noise distributions cannot recognize arbitrary regular languages. Neural Computation, 11, 771-782.
    • (1999) Neural Computation , vol.11 , pp. 771-782
    • Maass, W.1    Sontag, E.D.2
  • 35
    • 0017714604 scopus 로고
    • Oscillations and chaos in physiological control systems
    • Mackey, M. C., & Glass, L. (1977). Oscillations and chaos in physiological control systems. Science, 197, 287-289.
    • (1977) Science , vol.197 , pp. 287-289
    • Mackey, M.C.1    Glass, L.2
  • 36
    • 0021474165 scopus 로고
    • Estimation of probabilities in the language model of the IBM speech recognition system
    • Nadas, J. (1984). Estimation of probabilities in the language model of the IBM speech recognition system. IEEE Transactions on ASSP, 4, 859-861.
    • (1984) IEEE Transactions on ASSP , vol.4 , pp. 859-861
    • Nadas, J.1
  • 37
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. Jordan (Ed.), Norwell, MA: Kluwer
    • Neal, R., & Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. Jordan (Ed.), Learning in graphical models (pp. 355-368). Norwell, MA: Kluwer.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.1    Hinton, G.2
  • 38
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • Omlin, C. W., & Giles, C. L. (1996a). Constructing deterministic finite-state automata in recurrent neural networks. Journal of the ACM, 43(6), 937-972.
    • (1996) Journal of the ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.W.1    Giles, C.L.2
  • 39
    • 0030585201 scopus 로고    scopus 로고
    • Stable encoding of large finite-state automata in recurrent networks with sigmoid discriminants
    • Omlin, C. W., & Giles, C. L. (1996b). Stable encoding of large finite-state automata in recurrent networks with sigmoid discriminants. Neural Computation, 8, 675-696.
    • (1996) Neural Computation , vol.8 , pp. 675-696
    • Omlin, C.W.1    Giles, C.L.2
  • 42
    • 0000383868 scopus 로고
    • Parallel networks that learn to pronounce English text
    • Sejnowski, T., & Rosenberg, C. (1987). Parallel networks that learn to pronounce English text. Complex Systems, 1, 145-168.
    • (1987) Complex Systems , vol.1 , pp. 145-168
    • Sejnowski, T.1    Rosenberg, C.2
  • 44
    • 0028500244 scopus 로고
    • Analog computation, neural networks, and circuits
    • Siegelmann, H. T., & Sontag, E. D. (1994). Analog computation, neural networks, and circuits. Theoretical Computer Science, 131, 331-360.
    • (1994) Theoretical Computer Science , vol.131 , pp. 331-360
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 46
    • 0026904597 scopus 로고
    • Feedforward nets for interpolation and classification
    • Sontag, E. D. (1992). Feedforward nets for interpolation and classification. Journal of Computer and System Sciences, 45, 20-48.
    • (1992) Journal of Computer and System Sciences , vol.45 , pp. 20-48
    • Sontag, E.D.1
  • 47
    • 0009846660 scopus 로고    scopus 로고
    • VC dimension of neural networks
    • C. Bishop (Ed.), Berlin: Springer-Verlag
    • Sontag, E. D. (1998). VC dimension of neural networks. In C. Bishop (Ed.), Neural networks and machine learning (pp. 69-95). Berlin: Springer-Verlag.
    • (1998) Neural Networks and Machine Learning , pp. 69-95
    • Sontag, E.D.1
  • 48
    • 0042708931 scopus 로고    scopus 로고
    • Introduction to sequence learning
    • R. Sun & C. L. Giles (Eds.), Berlin: Springer-Verlag
    • Sun, R. (2001), Introduction to sequence learning. In R. Sun & C. L. Giles (Eds.), Sequence learning: Paradigms, algorithms, and applications (pp. 1-10). Berlin: Springer-Verlag.
    • (2001) Sequence Learning: Paradigms, Algorithms, and Applications , pp. 1-10
    • Sun, R.1
  • 51
    • 0000860629 scopus 로고    scopus 로고
    • Predicting the future of discrete sequences from fractal representations of the past
    • Tiňo, P., & Dorffner, G. (2001). Predicting the future of discrete sequences from fractal representations of the past. Machine Learning, 45(2), 187-218.
    • (2001) Machine Learning , vol.45 , Issue.2 , pp. 187-218
    • Tiňo, P.1    Dorffner, G.2
  • 52
    • 84902200342 scopus 로고    scopus 로고
    • Architectural bias of recurrent neural networks - Fractal analysis
    • J. R. Dorronsoro (Ed.), Berlin: Springer-Verlag
    • Tiňo, P., & Hammer, B. (2002). Architectural bias of recurrent neural networks - fractal analysis. In J. R. Dorronsoro (Ed.), Int. Conf. on Artificial Neural Networks (ICANN 2002) (pp. 1359-1364). Berlin: Springer-Verlag.
    • (2002) Int. Conf. on Artificial Neural Networks (ICANN 2002) , pp. 1359-1364
    • Tiňo, P.1    Hammer, B.2
  • 53
    • 0040726637 scopus 로고
    • Learning and extracting initial Mealy machines with a modular neural network model
    • Tiňo, P., & Šajda, J. (1995). Learning and extracting initial Mealy machines with a modular neural network model. Neural Computation, 4, 822-844.
    • (1995) Neural Computation , vol.4 , pp. 822-844
    • Tiňo, P.1    Šajda, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.