메뉴 건너뛰기




Volumn 21, Issue 2, 2005, Pages 341-362

A dynamic artificial neural network model for forecasting time series events

Author keywords

ARIMA; Artificial neural networks; Back propagation; Forecasting; Time series

Indexed keywords


EID: 14844288028     PISSN: 01692070     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijforecast.2004.10.008     Document Type: Article
Times cited : (199)

References (50)
  • 2
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • U. Anders & O. Korn Model selection in neural networks Neural Networks 12 1999 309-323
    • (1999) Neural Networks , vol.12 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 4
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: Unifying the algorithms and accelerating convergence
    • A.F. Atya & A.G. Parlos New results on recurrent network training: Unifying the algorithms and accelerating convergence IEEE Transactions on Neural Networks 2 3 2000 697-709
    • (2000) IEEE Transactions on Neural Networks , vol.2 , Issue.3 , pp. 697-709
    • Atya, A.F.1    Parlos, A.G.2
  • 5
    • 0032858888 scopus 로고    scopus 로고
    • Dynamical recurrent neural networks towards prediction and modeling of dynamical systems
    • A. Aussem Dynamical recurrent neural networks towards prediction and modeling of dynamical systems Neurocomputing 28 1999 207-232
    • (1999) Neurocomputing , vol.28 , pp. 207-232
    • Aussem, A.1
  • 6
    • 0001024110 scopus 로고
    • First and second order methods for learning: Between steepest decent and Newton's method
    • R. Battiti First and second order methods for learning: Between steepest decent and Newton's method Neural Computation 4 2 1992 141-166
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 10
    • 0003708762 scopus 로고
    • Smoothing, forecasting and prediction of discrete time series
    • Englewood Cliffs: Prentice Hall
    • R.G. Brown Smoothing, forecasting and prediction of discrete time series 1962 Prentice Hall Englewood Cliffs
    • (1962)
    • Brown, R.G.1
  • 11
    • 0000589618 scopus 로고
    • A survey of statistical work on the mackenzie river series of annual canadian lynx trappings for the years 1821-1934 and a new analysis
    • M.J. Campbell & A.M. Walker A survey of statistical work on the mackenzie river series of annual canadian lynx trappings for the years 1821-1934 and a new analysis Journal of the Royal Statistical Society. Series A. Statistics in Society 140 1977 411-431
    • (1977) Journal of the Royal Statistical Society. Series A. Statistics in Society , vol.140 , pp. 411-431
    • Campbell, M.J.1    Walker, A.M.2
  • 12
    • 0003047270 scopus 로고    scopus 로고
    • Tests of equal forecast accuracy and encompassing for nested models
    • T.E. Clark & M.W. McCracken Tests of equal forecast accuracy and encompassing for nested models Journal of Econometrics 105 2001 85-110
    • (2001) Journal of Econometrics , vol.105 , pp. 85-110
    • Clark, T.E.1    McCracken, M.W.2
  • 13
    • 0346389567 scopus 로고    scopus 로고
    • A consistent test for nonlinear out of sample predictive accuracy
    • V. Corradi & N.R. Swanson A consistent test for nonlinear out of sample predictive accuracy Journal of Econometrics 1110 2002 353-381
    • (2002) Journal of Econometrics , vol.1110 , pp. 353-381
    • Corradi, V.1    Swanson, N.R.2
  • 15
    • 0026261936 scopus 로고
    • Analysis of univariate time series with connectionist nets: A case study of two classical examples
    • C. de Groot & D. Wurtz Analysis of univariate time series with connectionist nets: A case study of two classical examples Neurocomputing 3 1991 177-192
    • (1991) Neurocomputing , vol.3 , pp. 177-192
    • de Groot, C.1    Wurtz, D.2
  • 17
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cognitive Science 14 1990 179-211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 18
    • 0000051984 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation
    • R.F. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation Econometrica 50 1982 987-1008
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 19
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: A comparative study using the airline data
    • J. Faraway & C. Chatfield Time series forecasting with neural networks: A comparative study using the airline data Applied Statistics 47 2 1998 231-250
    • (1998) Applied Statistics , vol.47 , Issue.2 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 20
    • 12144271359 scopus 로고    scopus 로고
    • A dynamic architecture for artificial neural network
    • M. Ghiassi & H. Saidane A dynamic architecture for artificial neural network Neurocomputing 63 2005 397-413
    • (2005) Neurocomputing , vol.63 , pp. 397-413
    • Ghiassi, M.1    Saidane, H.2
  • 21
    • 0003053374 scopus 로고
    • Research prospective on neural network forecasting
    • W.L. Gorr Research prospective on neural network forecasting International Journal of Forecasting 10 1994 1-4
    • (1994) International Journal of Forecasting , vol.10 , pp. 1-4
    • Gorr, W.L.1
  • 23
    • 14844296521 scopus 로고    scopus 로고
    • New, more complex neural networks yield better predicton results: More or Less
    • May 15, 2000
    • Grushkin, B. (2000). New, more complex neural networks yield better predicton results: More or Less, Intelligent Enterprise, May 15, 2000, 35-39 (http://www.intelligententerprise.com/000515/decision.jhtml).
    • (2000) Intelligent Enterprise , pp. 35-39
    • Grushkin, B.1
  • 24
    • 0000860595 scopus 로고    scopus 로고
    • Neural network models for time series forecasts
    • T. Hill M. O'Connor & W. Remus Neural network models for time series forecasts Management Science 42 7 1996 1082-1092
    • (1996) Management Science , vol.42 , Issue.7 , pp. 1082-1092
    • Hill, T.1    O'Connor, M.2    Remus, W.3
  • 25
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik M. Stinchcombe & H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 26
    • 0033442924 scopus 로고    scopus 로고
    • A cross-validation analysis of neural network out-of-sample performance in exchange rate forecasting
    • M.Y. Hu G.P. Zhang C.X. Jiang & B.E. Patuwo A cross-validation analysis of neural network out-of-sample performance in exchange rate forecasting Decision Sciences 30 1 1999 197-216
    • (1999) Decision Sciences , vol.30 , Issue.1 , pp. 197-216
    • Hu, M.Y.1    Zhang, G.P.2    Jiang, C.X.3    Patuwo, B.E.4
  • 27
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • R.A. Jacob Increased rates of convergence through learning rate adaptation Neural Networks 1 4 1988 295-308
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 295-308
    • Jacob, R.A.1
  • 29
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • T.Y. Kwok & D.Y. Yeung Constructive algorithms for structure learning in feedforward neural networks for regression problems IEEE Transactions on Neural Networks 8 3 1997 630-645
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 32
    • 0043191477 scopus 로고    scopus 로고
    • Evolving reduced parameter bilinear models for time series prediction using fast evolutionary programming
    • J.R. Koza D.E. Goldberg D.B. Fogel R.L. Riolo (Eds.) MIT Press
    • S.S. Rao & K. Chalapilla Evolving reduced parameter bilinear models for time series prediction using fast evolutionary programming. In: J.R. Koza D.E. Goldberg D.B. Fogel & R.L. Riolo (Eds.) Proceeding of the 1st Annual Conf. on Genetitc Programming 1996 MIT Press 528-535
    • (1996) Proceeding of the 1st Annual Conf. on Genetitc Programming , pp. 528-535
    • Rao, S.S.1    Chalapilla, K.2
  • 33
    • 0003299258 scopus 로고
    • An introduction to bispectral analysis and bilinear time series models
    • Springer-Verlag New York
    • T.S. Rao & M.M. Gabr An introduction to bispectral analysis and bilinear time series models Lecture Notes in Statistics vol. 24 1984 Springer-Verlag New York
    • (1984) Lecture Notes in Statistics , vol.24
    • Rao, T.S.1    Gabr, M.M.2
  • 35
    • 0033561894 scopus 로고    scopus 로고
    • On cross validation for model selection
    • I. Rivals & L. Personnaz On cross validation for model selection Neural Computation 11 1999 863-870
    • (1999) Neural Computation , vol.11 , pp. 863-870
    • Rivals, I.1    Personnaz, L.2
  • 36
    • 0042525842 scopus 로고    scopus 로고
    • Neural-network construction and selection in nonlinear modeling
    • I. Rivals & L. Personnaz Neural-network construction and selection in nonlinear modeling IEEE Transactions on Neural Networks 14 4 2003 804-819
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.4 , pp. 804-819
    • Rivals, I.1    Personnaz, L.2
  • 38
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E. Rumelhart G.E. Hinton & R.J. Williams Learning representations by back-propagating errors Nature 323 6188 1986 533-536
    • (1986) Nature , vol.323 , Issue.6188 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 39
    • 14844291731 scopus 로고    scopus 로고
    • SAS The SAS System 8e for MS-Windows, Release 8.02, SAS Institute Inc
    • SAS (2001)-The SAS System 8e for MS-Windows, Release 8.02, SAS Institute Inc.
    • (2001)
  • 40
    • 14844313779 scopus 로고    scopus 로고
    • SPSS Clementine Data Mining System, Version 5, SPSS, Inc
    • SPSS (1998)-Clementine Data Mining System, Version 5, SPSS, Inc.
    • (1998)
  • 41
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Z. Tang C. Almedia & P.A. Fishwick Time series forecasting using neural networks vs. Box-Jenkins methodology Simulation 57 1991 303-310
    • (1991) Simulation , vol.57 , pp. 303-310
    • Tang, Z.1    Almedia, C.2    Fishwick, P.A.3
  • 42
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Z. Tang & P.A. Fishwick Feedforward neural nets as models for time series forecasting ORSA Journal of Computing 5 1993 374-385
    • (1993) ORSA Journal of Computing , vol.5 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 43
    • 0034346267 scopus 로고    scopus 로고
    • Artificial neural network decision support systems for new product development project selection
    • R.J. Thieme M. Song & R. Calantone Artificial neural network decision support systems for new product development project selection Journal of Marketing Research 37 2000 499-507
    • (2000) Journal of Marketing Research , vol.37 , pp. 499-507
    • Thieme, R.J.1    Song, M.2    Calantone, R.3
  • 44
    • 0004089297 scopus 로고
    • Threshold models in non-linear time series analysis
    • New York: Springer-Verlag
    • H. Tong Threshold models in non-linear time series analysis 1983 Springer-Verlag New York
    • (1983)
    • Tong, H.1
  • 45
    • 0029304808 scopus 로고
    • Dynamic learning rate optimization of the back-propagation algorithm
    • X.H. Yu G.A. Chen & S.X. Cheng Dynamic learning rate optimization of the back-propagation algorithm IEEE Transactions on Neural Networks 6 3 1993 669-677
    • (1993) IEEE Transactions on Neural Networks , vol.6 , Issue.3 , pp. 669-677
    • Yu, X.H.1    Chen, G.A.2    Cheng, S.X.3
  • 46
    • 0000028873 scopus 로고    scopus 로고
    • A reality check for data snooping
    • H. White A reality check for data snooping Econometrica 68 5 2000 1097-1126
    • (2000) Econometrica , vol.68 , Issue.5 , pp. 1097-1126
    • White, H.1
  • 47
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R.J. Williams & D. Zipser A learning algorithm for continually running fully recurrent neural networks Neural Computation 1 1989 270-280
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 48
    • 0035480297 scopus 로고    scopus 로고
    • An investigation of neural networks for linear time-series forecasting
    • G. Zhang An investigation of neural networks for linear time-series forecasting Computers & Operations Research 28 2001 183-1202
    • (2001) Computers & Operations Research , vol.28 , pp. 183-1202
    • Zhang, G.1
  • 49
    • 0037243071 scopus 로고    scopus 로고
    • Time Series forecasting using a hybrid ARIMA and neural network model
    • G. Zhang Time Series forecasting using a hybrid ARIMA and neural network model Neurocomputing 50 2003 159-175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.