메뉴 건너뛰기




Volumn 43, Issue 6, 1996, Pages 937-972

Constructing deterministic finite-state automata in recurrent neural networks

Author keywords

Algorithms; Automata; Connectionism; Knowledge encoding; Neural networks; Nonlinear dynamics; Recurrent neural networks; Rules; Stability; Theory; Verification

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER SIMULATION; DYNAMICS; ENCODING (SYMBOLS); FINITE AUTOMATA; KNOWLEDGE ACQUISITION; NUMERICAL ANALYSIS; PATTERN RECOGNITION; PERFORMANCE; STABILITY;

EID: 0030286473     PISSN: 00045411     EISSN: None     Source Type: Journal    
DOI: 10.1145/235809.235811     Document Type: Article
Times cited : (150)

References (32)
  • 1
    • 0011252246 scopus 로고
    • Efficient simulation of finite automata by neural nets
    • Apr.
    • ALON, N., DEWDNEY, A. K., AND OTT, T. J. 1991. Efficient simulation of finite automata by neural nets, JACM 38, 2 (Apr.), 495-514.
    • (1991) JACM , vol.38 , Issue.2 , pp. 495-514
    • Alon, N.1    Dewdney, A.K.2    Ott, T.J.3
  • 3
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • CASEY, M. 1996. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction, Neural Comput. 8, 6, 1135-1178.
    • (1996) Neural Comput. , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.1
  • 4
    • 26444565569 scopus 로고
    • Finding structure in time
    • ELMAN, J. 1990. Finding structure in time. Cogn. Sci. 14, 179-211.
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.1
  • 5
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite state automata in recurrent radial basis function networks
    • FRASCONI, P., GORI, M., MAGGINI, M., AND SODA, G. 1996. Representation of finite state automata in recurrent radial basis function networks, Mach. Learn. 23, 5-32.
    • (1996) Mach. Learn. , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 7
    • 11244353146 scopus 로고
    • Injecting nondeterministic finite state automata into recurrent networks
    • Università di Firenze, Italy, Florence, Italy
    • FRASCONI, P., GORI, M., AND SODA, G. 1993. Injecting nondeterministic finite state automata into recurrent networks. Tech. Rep. Dipartimento di Sistemi e Informatica, Università di Firenze, Italy, Florence, Italy.
    • (1993) Tech. Rep. Dipartimento di Sistemi e Informatica
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 8
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • GEMAN, S., BIENENSTOCK, E., AND DOURSTAT, R. 1992. Neural networks and the bias/variance dilemma, Neural Comput. 4, 1, 1-58.
    • (1992) Neural Comput. , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Dourstat, R.3
  • 10
    • 84943612928 scopus 로고
    • Special issue on Dynamic recurrent neural networks: Theory and applications
    • GILES, C., KUHN, G., AND WILLIAMS, R. 1994. Special issue on Dynamic recurrent neural networks: Theory and applications, IEEE Trans. Neural Netw. 5, 2.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 2
    • Giles, C.1    Kuhn, G.2    Williams, R.3
  • 11
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • GILES, C., MILLER, C., CHEN, D., CHEN, H., SUN, G., AND LEE, Y. 1992. Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comput. 4, 3, 380.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 380
    • Giles, C.1    Miller, C.2    Chen, D.3    Chen, H.4    Sun, G.5    Lee, Y.6
  • 12
    • 84947459398 scopus 로고
    • Inserting rules into recurrent neural networks
    • (S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm, eds.) IEEE, New York
    • GILES, C., AND OMLIN, C. 1992. Inserting rules into recurrent neural networks. In Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop (S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm, eds.) IEEE, New York, pp. 13-22.
    • (1992) Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop , pp. 13-22
    • Giles, C.1    Omlin, C.2
  • 15
    • 0024909476 scopus 로고
    • Convergent activation dynamics in continuous-time neural networks
    • HIRSCH, M. 1989. Convergent activation dynamics in continuous-time neural networks. Neural Netw. 2, 331-351.
    • (1989) Neural Netw. , vol.2 , pp. 331-351
    • Hirsch, M.1
  • 16
    • 0028325696 scopus 로고
    • Saturation at high gain in discrete time recurrent networks
    • HIRSCH, M. 1994. Saturation at high gain in discrete time recurrent networks. Neural Netw. 7, 3, 449-453.
    • (1994) Neural Netw. , vol.7 , Issue.3 , pp. 449-453
    • Hirsch, M.1
  • 18
    • 0030110968 scopus 로고    scopus 로고
    • Bounds on the complexity of recurrent neural network implementations of finite state machines
    • HORNE, B., AND HUSH, D. 1996. Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Netw. 9, 2, 243-252.
    • (1996) Neural Netw. , vol.9 , Issue.2 , pp. 243-252
    • Horne, B.1    Hush, D.2
  • 19
    • 0027596624 scopus 로고
    • Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding
    • MACLIN, R., AND SHAVLIK, J. 1993. Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Mach. Learn. 11, 195-215.
    • (1993) Mach. Learn. , vol.11 , pp. 195-215
    • Maclin, R.1    Shavlik, J.2
  • 21
  • 22
    • 0030083072 scopus 로고    scopus 로고
    • Rule revision with recurrent neural networks
    • OMLIN, C., AND GILES, C. 1996a. Rule revision with recurrent neural networks. IEEE Trans. Knowl. Data Eng. 8, 1, 183-188.
    • (1996) IEEE Trans. Knowl. Data Eng. , vol.8 , Issue.1 , pp. 183-188
    • Omlin, C.1    Giles, C.2
  • 23
    • 0030585201 scopus 로고    scopus 로고
    • Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants
    • OMLIN, C., AND GILES, C. 1996b. Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants. Neural Comput. 8, 4, 675-696.
    • (1996) Neural Comput. , vol.8 , Issue.4 , pp. 675-696
    • Omlin, C.1    Giles, C.2
  • 24
    • 84919251838 scopus 로고
    • Training second-order recurrent neural networks using hints
    • (San Mateo, Calif.), D. Sleeman and P. Edwards, eds. Morgan-Kaufmann, San Mateo, Calif.
    • OMLIN, C., AND GILES, C. 1992. Training second-order recurrent neural networks using hints, in Proceedings of the 9th International Conference on Machine Learning (San Mateo, Calif.), D. Sleeman and P. Edwards, eds. Morgan-Kaufmann, San Mateo, Calif., pp. 363-368.
    • (1992) Proceedings of the 9th International Conference on Machine Learning , pp. 363-368
    • Omlin, C.1    Giles, C.2
  • 25
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • POLLACK, J. 1991. The induction of dynamical recognizers. Mach. Learn. 7, 227-252.
    • (1991) Mach. Learn. , vol.7 , pp. 227-252
    • Pollack, J.1
  • 26
    • 0001395132 scopus 로고
    • Graded state machine: The representation of temporal contingencies in simple recurrent networks
    • SERVAN-SCHREIBER, D., CLEEREMANS, A., AND MCCLELLAND, J. 1991. Graded state machine: The representation of temporal contingencies in simple recurrent networks. Mach. Learn. 7, 161.
    • (1991) Mach. Learn. , vol.7 , pp. 161
    • Servan-Schreiber, D.1    Cleeremans, A.2    Mcclelland, J.3
  • 27
    • 0028384347 scopus 로고
    • Combining symbolic and neural learning
    • SHAVLIK, J. 1994. Combining symbolic and neural learning. Mach. Learn. 14, 3, 321-331.
    • (1994) Mach. Learn. , vol.14 , Issue.3 , pp. 321-331
    • Shavlik, J.1
  • 30
    • 85158010005 scopus 로고
    • Refinement of approximately correct domain theories by knowledge-based neural networks
    • (San Mateo, Calif.) Morgan-Kaufmann, San Mateo, Calif.
    • TOWELL, G., SHAVLIK, J., AND NOORDEWIER, M. 1990. Refinement of approximately correct domain theories by knowledge-based neural networks. In Proceedings of the 8th National Conference on Artificial Intelligence (San Mateo, Calif.) Morgan-Kaufmann, San Mateo, Calif., p. 861.
    • (1990) Proceedings of the 8th National Conference on Artificial Intelligence , pp. 861
    • Towell, G.1    Shavlik, J.2    Noordewier, M.3
  • 31
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • WATROUS, R., AND KUHN, G. 1992. Induction of finite-state languages using second-order recurrent networks. Neural Comput. 4, 3, 406.
    • (1992) Neural Comput. , vol.4 , Issue.3 , pp. 406
    • Watrous, R.1    Kuhn, G.2
  • 32
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • ZENG, Z., GOODMAN, R., AND SMYTH, P. 1993. Learning finite state machines with self-clustering recurrent networks. Neural Comput. 5, 6, 976-990.
    • (1993) Neural Comput. , vol.5 , Issue.6 , pp. 976-990
    • Zeng, Z.1    Goodman, R.2    Smyth, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.