-
1
-
-
0011252246
-
Efficient simulation of finite automata by neural nets
-
Apr.
-
ALON, N., DEWDNEY, A. K., AND OTT, T. J. 1991. Efficient simulation of finite automata by neural nets, JACM 38, 2 (Apr.), 495-514.
-
(1991)
JACM
, vol.38
, Issue.2
, pp. 495-514
-
-
Alon, N.1
Dewdney, A.K.2
Ott, T.J.3
-
3
-
-
0030586641
-
The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
-
CASEY, M. 1996. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction, Neural Comput. 8, 6, 1135-1178.
-
(1996)
Neural Comput.
, vol.8
, Issue.6
, pp. 1135-1178
-
-
Casey, M.1
-
4
-
-
26444565569
-
Finding structure in time
-
ELMAN, J. 1990. Finding structure in time. Cogn. Sci. 14, 179-211.
-
(1990)
Cogn. Sci.
, vol.14
, pp. 179-211
-
-
Elman, J.1
-
5
-
-
0030125824
-
Representation of finite state automata in recurrent radial basis function networks
-
FRASCONI, P., GORI, M., MAGGINI, M., AND SODA, G. 1996. Representation of finite state automata in recurrent radial basis function networks, Mach. Learn. 23, 5-32.
-
(1996)
Mach. Learn.
, vol.23
, pp. 5-32
-
-
Frasconi, P.1
Gori, M.2
Maggini, M.3
Soda, G.4
-
6
-
-
0026372556
-
A unified approach for integrating explicit knowledge and learning by example in recurrent networks
-
IEEE, New York
-
FRASCONI, P., GORI, M., MAGGINI, M., AND SODA, G. 1991. A unified approach for integrating explicit knowledge and learning by example in recurrent networks. In Proceedings of the International Joint Conference on Neural Networks, vol. 1. IEEE, New York, p. 811.
-
(1991)
Proceedings of the International Joint Conference on Neural Networks
, vol.1
, pp. 811
-
-
Frasconi, P.1
Gori, M.2
Maggini, M.3
Soda, G.4
-
7
-
-
11244353146
-
Injecting nondeterministic finite state automata into recurrent networks
-
Università di Firenze, Italy, Florence, Italy
-
FRASCONI, P., GORI, M., AND SODA, G. 1993. Injecting nondeterministic finite state automata into recurrent networks. Tech. Rep. Dipartimento di Sistemi e Informatica, Università di Firenze, Italy, Florence, Italy.
-
(1993)
Tech. Rep. Dipartimento di Sistemi e Informatica
-
-
Frasconi, P.1
Gori, M.2
Soda, G.3
-
8
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
GEMAN, S., BIENENSTOCK, E., AND DOURSTAT, R. 1992. Neural networks and the bias/variance dilemma, Neural Comput. 4, 1, 1-58.
-
(1992)
Neural Comput.
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Dourstat, R.3
-
9
-
-
0026743865
-
Second-order recurrent neural networks for grammatical inference
-
IEEE, New York
-
GILES, C., CHEN, D., MILLER, C., CHEN, H., SUN, G., AND LEE, Y. 1991. Second-order recurrent neural networks for grammatical inference. In Proceedings of the International Joint Conference on Neural Networks 1991, vol. II. IEEE, New York, pp. 273-281.
-
(1991)
Proceedings of the International Joint Conference on Neural Networks 1991
, vol.2
, pp. 273-281
-
-
Giles, C.1
Chen, D.2
Miller, C.3
Chen, H.4
Sun, G.5
Lee, Y.6
-
10
-
-
84943612928
-
Special issue on Dynamic recurrent neural networks: Theory and applications
-
GILES, C., KUHN, G., AND WILLIAMS, R. 1994. Special issue on Dynamic recurrent neural networks: Theory and applications, IEEE Trans. Neural Netw. 5, 2.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 2
-
-
Giles, C.1
Kuhn, G.2
Williams, R.3
-
11
-
-
0001327717
-
Learning and extracting finite state automata with second-order recurrent neural networks
-
GILES, C., MILLER, C., CHEN, D., CHEN, H., SUN, G., AND LEE, Y. 1992. Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comput. 4, 3, 380.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 380
-
-
Giles, C.1
Miller, C.2
Chen, D.3
Chen, H.4
Sun, G.5
Lee, Y.6
-
12
-
-
84947459398
-
Inserting rules into recurrent neural networks
-
(S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm, eds.) IEEE, New York
-
GILES, C., AND OMLIN, C. 1992. Inserting rules into recurrent neural networks. In Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop (S. Kung, F. Fallside, J. A. Sorenson, and C. Kamm, eds.) IEEE, New York, pp. 13-22.
-
(1992)
Neural Networks for Signal Processing II, Proceedings of the 1992 IEEE Workshop
, pp. 13-22
-
-
Giles, C.1
Omlin, C.2
-
13
-
-
0002650755
-
Rule refinement with recurrent neural networks
-
IEEE, New York
-
GILES, C., AND OMLIN, C. 1993. Rule refinement with recurrent neural networks. In Proceedings IEEE International Conference on Neural Networks (ICNN'93), vol. II. IEEE, New York, pp. 801-806.
-
(1993)
Proceedings IEEE International Conference on Neural Networks (ICNN'93)
, vol.2
, pp. 801-806
-
-
Giles, C.1
Omlin, C.2
-
15
-
-
0024909476
-
Convergent activation dynamics in continuous-time neural networks
-
HIRSCH, M. 1989. Convergent activation dynamics in continuous-time neural networks. Neural Netw. 2, 331-351.
-
(1989)
Neural Netw.
, vol.2
, pp. 331-351
-
-
Hirsch, M.1
-
16
-
-
0028325696
-
Saturation at high gain in discrete time recurrent networks
-
HIRSCH, M. 1994. Saturation at high gain in discrete time recurrent networks. Neural Netw. 7, 3, 449-453.
-
(1994)
Neural Netw.
, vol.7
, Issue.3
, pp. 449-453
-
-
Hirsch, M.1
-
17
-
-
0003620778
-
-
Addison-Wesley, Reading, Mass.
-
HOPCROFT, J., AND ULLMAN, J. 1979. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Mass.
-
(1979)
Introduction to Automata Theory, Languages, and Computation
-
-
Hopcroft, J.1
Ullman, J.2
-
18
-
-
0030110968
-
Bounds on the complexity of recurrent neural network implementations of finite state machines
-
HORNE, B., AND HUSH, D. 1996. Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Netw. 9, 2, 243-252.
-
(1996)
Neural Netw.
, vol.9
, Issue.2
, pp. 243-252
-
-
Horne, B.1
Hush, D.2
-
19
-
-
0027596624
-
Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding
-
MACLIN, R., AND SHAVLIK, J. 1993. Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Mach. Learn. 11, 195-215.
-
(1993)
Mach. Learn.
, vol.11
, pp. 195-215
-
-
Maclin, R.1
Shavlik, J.2
-
21
-
-
0004165618
-
-
Prentice-Hall, Inc., Englewood Cliffs, N.J., Chap. 3
-
MINSKY, M. 1967. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. 32-66 (Chap. 3).
-
(1967)
Computation: Finite and Infinite Machines
, pp. 32-66
-
-
Minsky, M.1
-
22
-
-
0030083072
-
Rule revision with recurrent neural networks
-
OMLIN, C., AND GILES, C. 1996a. Rule revision with recurrent neural networks. IEEE Trans. Knowl. Data Eng. 8, 1, 183-188.
-
(1996)
IEEE Trans. Knowl. Data Eng.
, vol.8
, Issue.1
, pp. 183-188
-
-
Omlin, C.1
Giles, C.2
-
23
-
-
0030585201
-
Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants
-
OMLIN, C., AND GILES, C. 1996b. Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants. Neural Comput. 8, 4, 675-696.
-
(1996)
Neural Comput.
, vol.8
, Issue.4
, pp. 675-696
-
-
Omlin, C.1
Giles, C.2
-
24
-
-
84919251838
-
Training second-order recurrent neural networks using hints
-
(San Mateo, Calif.), D. Sleeman and P. Edwards, eds. Morgan-Kaufmann, San Mateo, Calif.
-
OMLIN, C., AND GILES, C. 1992. Training second-order recurrent neural networks using hints, in Proceedings of the 9th International Conference on Machine Learning (San Mateo, Calif.), D. Sleeman and P. Edwards, eds. Morgan-Kaufmann, San Mateo, Calif., pp. 363-368.
-
(1992)
Proceedings of the 9th International Conference on Machine Learning
, pp. 363-368
-
-
Omlin, C.1
Giles, C.2
-
25
-
-
0001460434
-
The induction of dynamical recognizers
-
POLLACK, J. 1991. The induction of dynamical recognizers. Mach. Learn. 7, 227-252.
-
(1991)
Mach. Learn.
, vol.7
, pp. 227-252
-
-
Pollack, J.1
-
26
-
-
0001395132
-
Graded state machine: The representation of temporal contingencies in simple recurrent networks
-
SERVAN-SCHREIBER, D., CLEEREMANS, A., AND MCCLELLAND, J. 1991. Graded state machine: The representation of temporal contingencies in simple recurrent networks. Mach. Learn. 7, 161.
-
(1991)
Mach. Learn.
, vol.7
, pp. 161
-
-
Servan-Schreiber, D.1
Cleeremans, A.2
Mcclelland, J.3
-
27
-
-
0028384347
-
Combining symbolic and neural learning
-
SHAVLIK, J. 1994. Combining symbolic and neural learning. Mach. Learn. 14, 3, 321-331.
-
(1994)
Mach. Learn.
, vol.14
, Issue.3
, pp. 321-331
-
-
Shavlik, J.1
-
29
-
-
2342474266
-
-
Tech. Rep. UMIACS-TR-95-51. Institute for Advanced Computer Studies, Univ. Maryland, College Park, Md.
-
TINO, P., HORNE, B. AND GILES, C. 1995. Fixed points in two-neuron discrete time recurrent networks: Stability and bifurcation considerations. Tech. Rep. UMIACS-TR-95-51. Institute for Advanced Computer Studies, Univ. Maryland, College Park, Md.
-
(1995)
Fixed Points in Two-neuron Discrete Time Recurrent Networks: Stability and Bifurcation Considerations
-
-
Tino, P.1
Horne, B.2
Giles, C.3
-
30
-
-
85158010005
-
Refinement of approximately correct domain theories by knowledge-based neural networks
-
(San Mateo, Calif.) Morgan-Kaufmann, San Mateo, Calif.
-
TOWELL, G., SHAVLIK, J., AND NOORDEWIER, M. 1990. Refinement of approximately correct domain theories by knowledge-based neural networks. In Proceedings of the 8th National Conference on Artificial Intelligence (San Mateo, Calif.) Morgan-Kaufmann, San Mateo, Calif., p. 861.
-
(1990)
Proceedings of the 8th National Conference on Artificial Intelligence
, pp. 861
-
-
Towell, G.1
Shavlik, J.2
Noordewier, M.3
-
31
-
-
0001601299
-
Induction of finite-state languages using second-order recurrent networks
-
WATROUS, R., AND KUHN, G. 1992. Induction of finite-state languages using second-order recurrent networks. Neural Comput. 4, 3, 406.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 406
-
-
Watrous, R.1
Kuhn, G.2
-
32
-
-
0000003489
-
Learning finite state machines with self-clustering recurrent networks
-
ZENG, Z., GOODMAN, R., AND SMYTH, P. 1993. Learning finite state machines with self-clustering recurrent networks. Neural Comput. 5, 6, 976-990.
-
(1993)
Neural Comput.
, vol.5
, Issue.6
, pp. 976-990
-
-
Zeng, Z.1
Goodman, R.2
Smyth, P.3
|