메뉴 건너뛰기




Volumn 15, Issue 6, 2003, Pages 1255-1320

A taxonomy for spatiotemporal connectionist networks revisited: The unsupervised case

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MODEL; CLASSIFICATION; NERVE CELL; NERVE TRACT; REVIEW;

EID: 0037928080     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976603321780281     Document Type: Review
Times cited : (54)

References (176)
  • 1
    • 84898967676 scopus 로고    scopus 로고
    • Temporally asymmetric Hebbian learning, spike timing and neuronal response variability
    • M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.). Cambridge, MA: MIT Press
    • Abbott, L. F., & Song, S. (1999). Temporally asymmetric Hebbian learning, spike timing and neuronal response variability. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 2 (pp. 69-75). Cambridge, MA: MIT Press.
    • (1999) Advances in Neural Information Processing Systems , vol.2 , pp. 69-75
    • Abbott, L.F.1    Song, S.2
  • 3
    • 0015435130 scopus 로고
    • Learning patterns and pattern sequences by self-organizing nets of threshold elements
    • Amari, S. (1972). Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Transactions on Computers, 0-21(11), 1197-1206.
    • (1972) IEEE Transactions on Computers , vol.21 , Issue.11 , pp. 1197-1206
    • Amari, S.1
  • 4
    • 0032187697 scopus 로고    scopus 로고
    • Adaptive blind signal processing - Neural network approaches
    • Amari, S., & Cichocki, A. (1998). Adaptive blind signal processing - Neural network approaches. Proceedings of the IEEE, 86(10), 2026-2048.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.10 , pp. 2026-2048
    • Amari, S.1    Cichocki, A.2
  • 6
    • 0003143576 scopus 로고
    • Estimating linear statistical relationships
    • Anderson, T. W. (1984). Estimating linear statistical relationships. Annals of Statistics, 122(1), 1-45.
    • (1984) Annals of Statistics , vol.122 , Issue.1 , pp. 1-45
    • Anderson, T.W.1
  • 7
    • 0036127335 scopus 로고    scopus 로고
    • Context in temporal sequence processing: A self-organizing approach and its application to robotics
    • Araújo, A. F. R., & Barreto, G. A. (2002a). Context in temporal sequence processing: A self-organizing approach and its application to robotics. IEEE Transactions on Neural Networks, 13(1), 45-57.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 45-57
    • Araújo, A.F.R.1    Barreto, G.A.2
  • 8
    • 0036640367 scopus 로고    scopus 로고
    • A self-organizing context-based approach to the tracking of multiple robot trajectories
    • Araújo, A. F. R., & Barreto, G. A. (2002b). A self-organizing context-based approach to the tracking of multiple robot trajectories. Applied Intelligence, 17(1), 99-116.
    • (2002) Applied Intelligence , vol.17 , Issue.1 , pp. 99-116
    • Araújo, A.F.R.1    Barreto, G.A.2
  • 9
    • 0006720808 scopus 로고    scopus 로고
    • On the role of time in brain computation
    • L. Harris & M. Jenkin (Eds.). Cambridge: Cambridge University Press
    • Ballard, D. H., Salgian, G., Rao, R. P. N., & McCallum, R. A. (1998). On the role of time in brain computation. In L. Harris & M. Jenkin (Eds.), Vision and action (pp. 82-119). Cambridge: Cambridge University Press.
    • (1998) Vision and Action , pp. 82-119
    • Ballard, D.H.1    Salgian, G.2    Rao, R.P.N.3    McCallum, R.A.4
  • 10
    • 0002303753 scopus 로고
    • The coding of sensory messages
    • W. Thorpe & O. Zangwill (Eds.). Cambridge: Cambridge University Press
    • Barlow, H. (1961). The coding of sensory messages. In W. Thorpe & O. Zangwill (Eds.), Current problems in animal behaviour (pp. 331-360). Cambridge: Cambridge University Press.
    • (1961) Current Problems in Animal Behaviour , pp. 331-360
    • Barlow, H.1
  • 11
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow, H. (1989). Unsupervised learning. Neural Computation, 1, 295-311.
    • (1989) Neural Computation , vol.1 , pp. 295-311
    • Barlow, H.1
  • 14
    • 84902169043 scopus 로고    scopus 로고
    • Nonlinear modeling of dynamic systems with the self-organizing map
    • J. R. Dorronsoro (Ed.). New York: Springer-Verlag
    • Barreto, G. A., & Araújo, A. F. R. (2002). Nonlinear modeling of dynamic systems with the self-organizing map. In J. R. Dorronsoro (Ed.), Lecture notes on computer science (Vol. 2415, pp. 975-980). New York: Springer-Verlag.
    • (2002) Lecture Notes on Computer Science , vol.2415 , pp. 975-980
    • Barreto, G.A.1    Araújo, A.F.R.2
  • 16
    • 18144362706 scopus 로고    scopus 로고
    • Learning viewpoint-invariant face representations from visual experience in an artractor network
    • Bartlett, M. S., & Sejnowski, T. J. (1998). Learning viewpoint-invariant face representations from visual experience in an artractor network. Network: Computation in Neural Systems, 9, 399-417.
    • (1998) Network: Computation in Neural Systems , vol.9 , pp. 399-417
    • Bartlett, M.S.1    Sejnowski, T.J.2
  • 18
    • 0030197052 scopus 로고    scopus 로고
    • Unsupervised neural network learning procedures for feature extraction and classification
    • Becker, S., & Plumbey, M. (1996). Unsupervised neural network learning procedures for feature extraction and classification. Applied Intelligence, 6(3), 185-203.
    • (1996) Applied Intelligence , vol.6 , Issue.3 , pp. 185-203
    • Becker, S.1    Plumbey, M.2
  • 19
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 20
    • 0002960595 scopus 로고
    • Bussgang techniques for blind deconvolution and equalization
    • S. Haykin (Ed.). Englewood Cliffs, NJ: Prentice Hall
    • Bellini, S. (1994). Bussgang techniques for blind deconvolution and equalization. In S. Haykin (Ed.), Blind deconvolution (pp. 8-59). Englewood Cliffs, NJ: Prentice Hall.
    • (1994) Blind Deconvolution , pp. 8-59
    • Bellini, S.1
  • 23
    • 0042276534 scopus 로고    scopus 로고
    • Using a modified Hypermap for analyzing moving scenes
    • S. Amari, L. Yu, W. Chan, I. King, & K. S. Lenng (Eds.). New York: Springer-Verlag
    • Blumestein, C., Brücner, B., Mecke, R., Wesarg, T., & Schauer, C. (1996). Using a modified Hypermap for analyzing moving scenes. In S. Amari, L. Yu, W. Chan, I. King, & K. S. Lenng (Eds.), Progress in neural information processing (pp. 428-431). New York: Springer-Verlag.
    • (1996) Progress in Neural Information Processing , pp. 428-431
    • Blumestein, C.1    Brücner, B.2    Mecke, R.3    Wesarg, T.4    Schauer, C.5
  • 24
    • 0001620293 scopus 로고
    • Working memory networks for learning temporal order with application to three-dimensional visual object recognition
    • Bradski, C. A., Carpenter, G., & Grossberg, S. (1992). Working memory networks for learning temporal order with application to three-dimensional visual object recognition. Neural Computation, 4(2), 279-286.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 279-286
    • Bradski, C.A.1    Carpenter, G.2    Grossberg, S.3
  • 25
    • 0028715133 scopus 로고
    • STORE working memory networks for storage and recall of arbitrary temporal sequences
    • Bradski, C. A., Carpenter, G., & Grossberg, S. (1994). STORE working memory networks for storage and recall of arbitrary temporal sequences. Biological Cybernetics, 71, 469-480.
    • (1994) Biological Cybernetics , vol.71 , pp. 469-480
    • Bradski, C.A.1    Carpenter, G.2    Grossberg, S.3
  • 26
    • 4243538067 scopus 로고
    • A modified hypermap architecture for classification of biological signals
    • I. Aleksander & J. Taylor (Eds.). Amsterdam: North-Holland
    • Brücner, B., Franz, M., & Richter, A. (1992). A modified hypermap architecture for classification of biological signals. In I. Aleksander & J. Taylor (Eds.), Artificial neural networks (Vol. 2, pp. 1167-1170). Amsterdam: North-Holland.
    • (1992) Artificial Neural Networks , vol.2 , pp. 1167-1170
    • Brücner, B.1    Franz, M.2    Richter, A.3
  • 28
    • 84956128411 scopus 로고
    • Noise-driven temporal association in neural networks
    • Buhmann, J., & Schulten, K. (1987). Noise-driven temporal association in neural networks. Europhysics Letters, 4, 1205-1209.
    • (1987) Europhysics Letters , vol.4 , pp. 1205-1209
    • Buhmann, J.1    Schulten, K.2
  • 29
    • 0026408256 scopus 로고
    • Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system
    • Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 4, 759-771.
    • (1991) Neural Networks , vol.4 , pp. 759-771
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.B.3
  • 30
    • 0032649276 scopus 로고    scopus 로고
    • A hierarchical self-organizing map model for sequence recognition
    • Carpinteiro, O. A. S. (1999). A hierarchical self-organizing map model for sequence recognition. Neural Processing Letters, 9(3), 209-220.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 209-220
    • Carpinteiro, O.A.S.1
  • 31
    • 0027187261 scopus 로고
    • The temporal Kohonen map
    • Chappell, G. J., & Taylor, J. G. (1993). The temporal Kohonen map. Neural Networks, 6(3), 441-445.
    • (1993) Neural Networks , vol.6 , Issue.3 , pp. 441-445
    • Chappell, G.J.1    Taylor, J.G.2
  • 32
    • 0031356330 scopus 로고    scopus 로고
    • Blind signal deconvolution by spatio-temporal decorrelation and demixing
    • J. Principe, L. Gile, N. Morgan, & E. Wilson (Eds.). New York: IEEE Press
    • Choi, S., & Cichocki, A. (1997). Blind signal deconvolution by spatio-temporal decorrelation and demixing. In J. Principe, L. Gile, N. Morgan, & E. Wilson (Eds.), Neural networks for signal processing (Vol. 7, pp. 426-435). New York: IEEE Press.
    • (1997) Neural Networks for Signal Processing , vol.7 , pp. 426-435
    • Choi, S.1    Cichocki, A.2
  • 33
    • 0034734108 scopus 로고    scopus 로고
    • Determining temporal pattern of community dynamics by using unsupervised learning algorithms
    • Chon, T.-S., Park, Y.-S., & Park, J. H. (2000). Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecological Modelling, 132, 151-166.
    • (2000) Ecological Modelling , vol.132 , pp. 151-166
    • Chon, T.-S.1    Park, Y.-S.2    Park, J.H.3
  • 34
    • 0032321088 scopus 로고    scopus 로고
    • Prediction of chaotic time series using dynamic cell structures and local linear models
    • Chudý, L., & Farkas, I. (1998). Prediction of chaotic time series using dynamic cell structures and local linear models. Neural Network World, 8(5), 481-489.
    • (1998) Neural Network World , vol.8 , Issue.5 , pp. 481-489
    • Chudý, L.1    Farkas, I.2
  • 35
    • 0020970741 scopus 로고
    • Absolute stability of global pattern formation and parallel memory storage by competitive neural networks
    • Cohen, M. A., & Grossberg, S. (1983). Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Transactions on Systems, Man, and Cybernetics, 13, 815-826.
    • (1983) IEEE Transactions on Systems, Man, and Cybernetics , vol.13 , pp. 815-826
    • Cohen, M.A.1    Grossberg, S.2
  • 36
    • 0000447832 scopus 로고
    • Masking fields: A massively parallel neural architecture for learning, recognizing, and predicting multiple groupings of patterned data
    • Cohen, M. A., & Grossberg, S. (1987). Masking fields: A massively parallel neural architecture for learning, recognizing, and predicting multiple groupings of patterned data. Applied Optics, 26, 1866-1891.
    • (1987) Applied Optics , vol.26 , pp. 1866-1891
    • Cohen, M.A.1    Grossberg, S.2
  • 38
    • 0001179408 scopus 로고
    • Competition and multiple cause models
    • Dayan, P., & Zemel, R. (1995). Competition and multiple cause models. Neural Computation, 7(3), 565-579.
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 565-579
    • Dayan, P.1    Zemel, R.2
  • 41
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • Dorffner, G. (1996). Neural networks for time series processing. Neural Network World, 6(4), 447-468.
    • (1996) Neural Network World , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 42
    • 0034244986 scopus 로고    scopus 로고
    • Gradient adaptive algorithms for contrast-based blind deconvolution
    • Douglas, S. C., & Kung, S.-Y. (2000). Gradient adaptive algorithms for contrast-based blind deconvolution. Journal of VLSI Signal Processing, 26(1), 47-60.
    • (2000) Journal of VLSI Signal Processing , vol.26 , Issue.1 , pp. 47-60
    • Douglas, S.C.1    Kung, S.-Y.2
  • 44
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 45
    • 0042777680 scopus 로고    scopus 로고
    • A self-organizing temporal pattern recognizer with application to robot landmark recognition
    • F. L. Silva, L. B. Almeida, & J. C. Principe (Eds.). Amsterdam: IOS Press
    • Euliano, N. R., Kulzer, P., & Principe, J. C. (1997). A self-organizing temporal pattern recognizer with application to robot landmark recognition. In F. L. Silva, L. B. Almeida, & J. C. Principe (Eds.), Spatiotemporal models in biological and artificial systems (pp. 41-48). Amsterdam: IOS Press.
    • (1997) Spatiotemporal Models in Biological and Artificial Systems , pp. 41-48
    • Euliano, N.R.1    Kulzer, P.2    Principe, J.C.3
  • 47
    • 0742301622 scopus 로고    scopus 로고
    • A spatiotemporal memory based on SOMs with activity diffusion
    • E. Oja & S. Kaski (Eds.). Amsterdam: Elsevier Science
    • Euliano, N. R., & Principe, J. C. (1999). A spatiotemporal memory based on SOMs with activity diffusion. In E. Oja & S. Kaski (Eds.), Kohonen maps (pp. 41-48). Amsterdam: Elsevier Science.
    • (1999) Kohonen Maps , pp. 41-48
    • Euliano, N.R.1    Principe, J.C.2
  • 48
    • 0032203063 scopus 로고    scopus 로고
    • Competitive principal component analysis for locally stationary time series
    • Fancourt, C. L., & Principe, J. C. (1997). Competitive principal component analysis for locally stationary time series. IEEE Transactions on Signal Processing, 46(11), 3068-3082.
    • (1997) IEEE Transactions on Signal Processing , vol.46 , Issue.11 , pp. 3068-3082
    • Fancourt, C.L.1    Principe, J.C.2
  • 50
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6, 559-601.
    • (1994) Neural Computation , vol.6 , pp. 559-601
    • Field, D.J.1
  • 51
    • 0025604930 scopus 로고
    • Forming sparse representations by local anti-Hebbian learning
    • Földiák, P. (1990). Forming sparse representations by local anti-Hebbian learning. Biological Cybernetics, 64, 165-170.
    • (1990) Biological Cybernetics , vol.64 , pp. 165-170
    • Földiák, P.1
  • 52
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Földiák, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3, 194-200.
    • (1991) Neural Computation , vol.3 , pp. 194-200
    • Földiák, P.1
  • 53
    • 84958974700 scopus 로고    scopus 로고
    • Applying LSTM to time series predictable through time-window approaches
    • G. Dorffner, H. Bischof, & K. Hornik (Eds.). New York: Springer-Verlag
    • Gers, F., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to time series predictable through time-window approaches. In G. Dorffner, H. Bischof, & K. Hornik (Eds.), Proceedings of International Conference on Artificial Neural Networks (ICANN'01) (Vol. LNCS 2130, pp. 669-676). New York: Springer-Verlag.
    • (2001) Proceedings of International Conference on Artificial Neural Networks (ICANN'01) , vol.LNCS 2130 , pp. 669-676
    • Gers, F.1    Eck, D.2    Schmidhuber, J.3
  • 54
    • 0027712687 scopus 로고
    • Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns
    • Gerstner, W., Ritz, R., & van Hemmen, J. L. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biological Cybernetics, 69, 503-515.
    • (1993) Biological Cybernetics , vol.69 , pp. 503-515
    • Gerstner, W.1    Ritz, R.2    Van Hemmen, J.L.3
  • 55
    • 0030362060 scopus 로고    scopus 로고
    • A temporal model of linear anti-Hebbian learning
    • Girolami, M., & Fyfe, C. (1996). A temporal model of linear anti-Hebbian learning. Neural Processing Letters, 4(3), 139-148.
    • (1996) Neural Processing Letters , vol.4 , Issue.3 , pp. 139-148
    • Girolami, M.1    Fyfe, C.2
  • 56
    • 0031455770 scopus 로고    scopus 로고
    • An extended exploratory projection pursuit network with linear and nonlinear anti-Hebbian lateral connections applied to the cocktail party problem
    • Girolami, M., & Fyfe, C. (1997). An extended exploratory projection pursuit network with linear and nonlinear anti-Hebbian lateral connections applied to the cocktail party problem. Neural Networks, 10(9), 1607-1618.
    • (1997) Neural Networks , vol.10 , Issue.9 , pp. 1607-1618
    • Girolami, M.1    Fyfe, C.2
  • 58
    • 0014536196 scopus 로고
    • Some networks that can learn, remember, and reproduce any number of complicated space-time patterns, I
    • Grossberg, S. (1969). Some networks that can learn, remember, and reproduce any number of complicated space-time patterns, I. Journal of Mathematics and Mechanics, 19, 53-91.
    • (1969) Journal of Mathematics and Mechanics , vol.19 , pp. 53-91
    • Grossberg, S.1
  • 59
    • 5244352553 scopus 로고
    • Competitive learning: From interactive activation to adaptive resonance
    • Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive Science, 11, 23-63.
    • (1987) Cognitive Science , vol.11 , pp. 23-63
    • Grossberg, S.1
  • 60
    • 0023981451 scopus 로고
    • The ART of adaptive pattern recognition by a self-organizing neural network
    • Grossberg, S., & Carpenter, G. (1988). The ART of adaptive pattern recognition by a self-organizing neural network. Computer, 21, 77-88.
    • (1988) Computer , vol.21 , pp. 77-88
    • Grossberg, S.1    Carpenter, G.2
  • 62
    • 0025600638 scopus 로고
    • A stochastic reinforcement learning algorithm for learning real valued functions
    • Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning real valued functions. Neural Networks, 3(6), 671-692.
    • (1990) Neural Networks , vol.3 , Issue.6 , pp. 671-692
    • Gullapalli, V.1
  • 63
    • 0028518732 scopus 로고
    • Time-delay ART for spatio-temporal patterns
    • Hagiwara, M. (1994). Time-delay ART for spatio-temporal patterns. Neurocomputing, 6(5), 513-521.
    • (1994) Neurocomputing , vol.6 , Issue.5 , pp. 513-521
    • Hagiwara, M.1
  • 67
    • 0027269174 scopus 로고
    • A neural architecture for pattern sequence verification through inference
    • Healy, M. J., Caudell, T. P., & Smith, S. D. (1993). A neural architecture for pattern sequence verification through inference. IEEE Transactions on Neural Networks, 4, 9-20.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , pp. 9-20
    • Healy, M.J.1    Caudell, T.P.2    Smith, S.D.3
  • 70
    • 0002553309 scopus 로고
    • Spatiotemporal association in neural networks
    • M. A. Arbib (Ed.). Cambridge, MA: MIT Press
    • Herz, A. V. M. (1995). Spatiotemporal association in neural networks. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 902-905). Cambridge, MA: MIT Press.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 902-905
    • Herz, A.V.M.1
  • 71
    • 0024599171 scopus 로고
    • Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets
    • Herz, A., Sulzer, B., Kühn, R., & van Hemmen, J. L. (1989). Hebbian learning reconsidered: Representation of static and dynamic objects in associative neural nets. Biological Cybernetics, 60, 457-467.
    • (1989) Biological Cybernetics , vol.60 , pp. 457-467
    • Herz, A.1    Sulzer, B.2    Kühn, R.3    Van Hemmen, J.L.4
  • 72
    • 0000999440 scopus 로고
    • Learning and relearning in Boltzmann machines
    • D. E. Rumelhart, J. L. McClelland, & the PDF Research Group (Eds.). Cambridge, MA: MIT Press
    • Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart, J. L. McClelland, & the PDF Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1, pp. 282-317). Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1 , pp. 282-317
    • Hinton, G.E.1    Sejnowski, T.J.2
  • 75
    • 0042777674 scopus 로고    scopus 로고
    • Beyond maximum likelihood and density estimation: A sample-based criterion for unsupervised learning of complex models
    • T. K. Leen, T. Dietterich, & V. Tresp (Eds.). Cambridge, MA: MIT Press
    • Hochreiter, S., & Mozer, M. C. (2001). Beyond maximum likelihood and density estimation: A sample-based criterion for unsupervised learning of complex models. In T. K. Leen, T. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems (Vol. 13, pp. 535-541). Cambridge, MA: MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 535-541
    • Hochreiter, S.1    Mozer, M.C.2
  • 77
    • 35649001607 scopus 로고
    • A quantitative description of membrane current and its application to conduction and excitation in nerve
    • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544.
    • (1952) Journal of Physiology , vol.117 , pp. 500-544
    • Hodgkin, A.L.1    Huxley, A.F.2
  • 80
    • 0004469897 scopus 로고
    • Neural networks with graded response have collective computational properties like those of two-state neurons
    • Hopfield, J. J. (1984). Neural networks with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences of the USA, 81, 3088-3092.
    • (1984) Proceedings of the National Academy of Sciences of the USA , vol.81 , pp. 3088-3092
    • Hopfield, J.J.1
  • 82
    • 0000263797 scopus 로고
    • Projection pursuit
    • Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 23(2), 435-475.
    • (1985) Annals of Statistics , vol.23 , Issue.2 , pp. 435-475
    • Huber, P.J.1
  • 83
    • 0026954775 scopus 로고
    • Neural networks for control systems - A survey
    • Hunt, K. J., Sbarbaro, D., Zbikowski, R., & Gawthrop, P. J. (1992). Neural networks for control systems - A survey. Automatica, 28(6), 1083-1112.
    • (1992) Automatica , vol.28 , Issue.6 , pp. 1083-1112
    • Hunt, K.J.1    Sbarbaro, D.2    Zbikowski, R.3    Gawthrop, P.J.4
  • 84
    • 0000466122 scopus 로고    scopus 로고
    • Survey on independent component analysis
    • Hyvärinen, A. (1999). Survey on independent component analysis. Neural Computing Surveys, 2, 94-128.
    • (1999) Neural Computing Surveys , vol.2 , pp. 94-128
    • Hyvärinen, A.1
  • 86
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general non-linear Hebbian-like learning rules
    • Hyvärinen, A., & Oja, E. (1998). Independent component analysis by general non-linear Hebbian-like learning rules. Signal Processing, 64(3), 301-313.
    • (1998) Signal Processing , vol.64 , Issue.3 , pp. 301-313
    • Hyvärinen, A.1    Oja, E.2
  • 87
    • 85153931963 scopus 로고
    • SARDNET: A self-organizing feature map for sequences
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.). Cambridge, MA: MIT Press
    • James, D. L., & Miikkulainen, R. (1995). SARDNET: A self-organizing feature map for sequences. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems (Vol. 7, pp. 577-584). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 577-584
    • James, D.L.1    Miikkulainen, R.2
  • 88
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architectures
    • Jutten, C., & Hérault, J. (1991). Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architectures. Signal Processing, 24(1), 1-10.
    • (1991) Signal Processing , vol.24 , Issue.1 , pp. 1-10
    • Jutten, C.1    Hérault, J.2
  • 91
    • 0001272054 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981-1997
    • Kaski, S., Kangas, J., & Kohonen, T. (1998). Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Computing Surveys, 1, 102-350.
    • (1998) Neural Computing Surveys , vol.1 , pp. 102-350
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 93
    • 0004178386 scopus 로고    scopus 로고
    • Englewood Cliffs, NJ: Prentice Hall
    • Khalil, H. (1996). Nonlinear systems. Englewood Cliffs, NJ: Prentice Hall.
    • (1996) Nonlinear Systems
    • Khalil, H.1
  • 95
    • 0023878618 scopus 로고
    • A neuronal model of classical conditioning
    • Klopf, A. H. (1988). A neuronal model of classical conditioning. Psychobiology, 16, 85-125.
    • (1988) Psychobiology , vol.16 , pp. 85-125
    • Klopf, A.H.1
  • 96
    • 0004647720 scopus 로고
    • The hypermap architecture
    • T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.). Amsterdam: North-Holland
    • Kohonen, T. (1991). The hypermap architecture. In T. Kohonen, K. Mäkisara, O. Simula, & J. Kangas (Eds.), Artificial neural Nnetworks (Vol. 1, pp. 1357-1360). Amsterdam: North-Holland.
    • (1991) Artificial Neural Nnetworks , vol.1 , pp. 1357-1360
    • Kohonen, T.1
  • 97
    • 0001380009 scopus 로고    scopus 로고
    • Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map
    • Kohonen, T. (1996). Emergence of invariant-feature detectors in the adaptive-subspace self-organizing map. Biological Cybernetics, 75, 281-291.
    • (1996) Biological Cybernetics , vol.75 , pp. 281-291
    • Kohonen, T.1
  • 99
    • 0000761101 scopus 로고    scopus 로고
    • Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM
    • Kohonen, T., Kaski, S., & Lappalainen, H. (1997). Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Computation, 9(6), 1321-1344.
    • (1997) Neural Computation , vol.9 , Issue.6 , pp. 1321-1344
    • Kohonen, T.1    Kaski, S.2    Lappalainen, H.3
  • 104
    • 0029342226 scopus 로고
    • On the computational power of Elman-style recurrent networks
    • Kremer, S. C. (1995). On the computational power of Elman-style recurrent networks. IEEE Transactions on Neural Networks, 6(4), 1000-1004.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 1000-1004
    • Kremer, S.C.1
  • 105
    • 0001117376 scopus 로고    scopus 로고
    • Spatio-temporal connectionist networks: A taxonomy and review
    • Kremer, S. C. (2001). Spatio-temporal connectionist networks: A taxonomy and review. Neural Computation, 13(2), 249-306.
    • (2001) Neural Computation , vol.13 , Issue.2 , pp. 249-306
    • Kremer, S.C.1
  • 110
    • 84898994677 scopus 로고    scopus 로고
    • Blind separation of delayed and convolved sources
    • M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.). Cambridge, MA: MIT Press
    • Lee, T.-W., Bell, A. J., & Lambert, R. H. (1997). Blind separation of delayed and convolved sources. In M. C. Mozer, M. I. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems, 9 (pp. 758-764). Cambridge, MA: MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 758-764
    • Lee, T.-W.1    Bell, A.J.2    Lambert, R.H.3
  • 111
    • 0036825796 scopus 로고    scopus 로고
    • Forecasting electricity consumption using nonlinear projection and self-organizing maps
    • Lendasse, A., Lee, J., Wertz, V., & Verleysen, M. (2002). Forecasting electricity consumption using nonlinear projection and self-organizing maps. Neurocomputing, 48, 299-311.
    • (2002) Neurocomputing , vol.48 , pp. 299-311
    • Lendasse, A.1    Lee, J.2    Wertz, V.3    Verleysen, M.4
  • 112
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki, M. S., & Sejnowski, T. J. (2000). Learning overcomplete representations. Neural Computation, 12, 337-365.
    • (2000) Neural Computation , vol.12 , pp. 337-365
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 113
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • Lin, T., Hörne, B., Tino, P., & Giles, C. (1996). Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6), 1329-1338.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Hörne, B.2    Tino, P.3    Giles, C.4
  • 114
    • 0031568358 scopus 로고    scopus 로고
    • Fast sigmoidal networks via spiking neurons
    • Maass, W. (1997a). Fast sigmoidal networks via spiking neurons. Neural Computation, 9, 279-304.
    • (1997) Neural Computation , vol.9 , pp. 279-304
    • Maass, W.1
  • 115
    • 0346677979 scopus 로고    scopus 로고
    • On the relevance of time in neural computation and learning
    • M. Li & A. Maruoka (Eds.). New York: Springer-Verlag
    • Maass, W. (1997b). On the relevance of time in neural computation and learning. In M. Li & A. Maruoka (Eds.), Proceedings of the 8th International Conference on Algorithmic Learning Theory (Vol. 1316, pp. 364-384). New York: Springer-Verlag.
    • (1997) Proceedings of the 8th International Conference on Algorithmic Learning Theory , vol.1316 , pp. 364-384
    • Maass, W.1
  • 116
    • 0003834557 scopus 로고
    • San Francisco: Freeman
    • Marr, D. (1982). Vision. San Francisco: Freeman.
    • (1982) Vision
    • Marr, D.1
  • 117
    • 0027632248 scopus 로고
    • "Neural-gas" network for vector quantization and its application to time-series prediction
    • Martinetz, T. M., Berkovich, S. G., & Schulten, K. J. (1993). "Neural-gas" network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4(4), 558-569.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 119
    • 78049442327 scopus 로고
    • A method for synthesizing sequential circuits
    • Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell System Technical Journal, 34(5), 1045-1079.
    • (1955) Bell System Technical Journal , vol.34 , Issue.5 , pp. 1045-1079
    • Mealy, G.H.1
  • 121
    • 0028425449 scopus 로고
    • The predictive brain: Temporal coincidence and temporal order in synaptic learning mechanisms
    • Montague, P. R., & Sejnowski, T. J. (1994). The predictive brain: Temporal coincidence and temporal order in synaptic learning mechanisms. Learning and Memory, 1, 1-33.
    • (1994) Learning and Memory , vol.1 , pp. 1-33
    • Montague, P.R.1    Sejnowski, T.J.2
  • 122
    • 0002703887 scopus 로고
    • Gedanken experiments on sequential machines
    • C. E. Shannon & J. McCarthy (Eds.). Princeton, NJ: Princeton University Press
    • Moore, E. F. (1956). Gedanken experiments on sequential machines. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 129-153). Princeton, NJ: Princeton University Press.
    • (1956) Automata Studies , pp. 129-153
    • Moore, E.F.1
  • 124
    • 0002291616 scopus 로고
    • Neural net architectures for temporal sequence processing
    • A. Weigend & N. Gershenfeld (Eds.). Redwood City, CA: Addison-Wesley
    • Mozer, M. C. (1993). Neural net architectures for temporal sequence processing. In A. Weigend & N. Gershenfeld (Eds.), Predicting the future and understanding the past (pp. 243-264). Redwood City, CA: Addison-Wesley.
    • (1993) Predicting the Future and Understanding the Past , pp. 243-264
    • Mozer, M.C.1
  • 125
    • 0031573050 scopus 로고    scopus 로고
    • Factor analysis using delta-rule wake-sleep learning
    • Neal, R. M., & Dayan, P. (1997). Factor analysis using delta-rule wake-sleep learning. Neural Computation, 9(8), 1781-1803.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1781-1803
    • Neal, R.M.1    Dayan, P.2
  • 126
    • 0002399288 scopus 로고
    • Neural networks, principal components, and subspaces
    • Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal of Neural Systems, 1, 61-68.
    • (1989) International Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 127
    • 0037174193 scopus 로고    scopus 로고
    • Unsupervised learning in neural computation
    • Oja, E. (2002). Unsupervised learning in neural computation. Theoretical Computer Science, 287, 187-207.
    • (2002) Theoretical Computer Science , vol.287 , pp. 187-207
    • Oja, E.1
  • 128
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks
    • Pearlmutter, B. (1995). Gradient calculations for dynamic recurrent neural networks. IEEE Transactions on Neural Networks, 6(5), 1212-1228.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.1
  • 129
    • 0030076118 scopus 로고
    • A neural model for generating and learning a rapid movement sequence
    • Plamondon, R., & Privitera, C. M. (1995). A neural model for generating and learning a rapid movement sequence. Biological Cybernetics, 74(2), 117-130.
    • (1995) Biological Cybernetics , vol.74 , Issue.2 , pp. 117-130
    • Plamondon, R.1    Privitera, C.M.2
  • 131
    • 0029714892 scopus 로고    scopus 로고
    • Temporal decorrelation using teacher forcing anti-Hebbian learning and its application in adaptive blind source separation
    • Kyoto, Japan
    • Principe, J. C., Wang, C., & Wu, H.-C. (1996). Temporal decorrelation using teacher forcing anti-Hebbian learning and its application in adaptive blind source separation. In Proc. IEEE Workshop on Neural Networks for Signal Processing (Vol. 6, pp. 413-422). Kyoto, Japan.
    • (1996) Proc. IEEE Workshop on Neural Networks for Signal Processing , vol.6 , pp. 413-422
    • Principe, J.C.1    Wang, C.2    Wu, H.-C.3
  • 132
    • 0041775733 scopus 로고    scopus 로고
    • Visual and motor learning using a chaotic recurrent neural network: Application to the control of a mobile robot
    • Berlin, Germany
    • Quoy, M., & Daucé, E. (2000). Visual and motor learning using a chaotic recurrent neural network: Application to the control of a mobile robot. In Proceedings of the ICSC Symposium on Neural Computation (NC'2000) (pp. 577-582). Berlin, Germany.
    • (2000) Proceedings of the ICSC Symposium on Neural Computation (NC'2000) , pp. 577-582
    • Quoy, M.1    Daucé, E.2
  • 133
    • 74549192405 scopus 로고    scopus 로고
    • Predictive sequence learning in recurrent neocortical circuits
    • S. A. Solla, T. K. Leen, & K.-R. Miller (Eds.). Cambridge, MA: MIT Press
    • Rao, R. P. N., & Sejnowski, T. J. (2000). Predictive sequence learning in recurrent neocortical circuits. In S. A. Solla, T. K. Leen, & K.-R. Miller (Eds.), Advances in neural information processing systems, 12 (pp. 164-170). Cambridge, MA: MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 164-170
    • Rao, R.P.N.1    Sejnowski, T.J.2
  • 134
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian models. Neural Computation, 11(2), 305-345.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 135
    • 0031072069 scopus 로고    scopus 로고
    • Learning temporally encoded patterns in networks of spiking neurons
    • Ruf, B., & Schmitt, M. (1997). Learning temporally encoded patterns in networks of spiking neurons. Neural Processing Letters, 5(1), 9-18.
    • (1997) Neural Processing Letters , vol.5 , Issue.1 , pp. 9-18
    • Ruf, B.1    Schmitt, M.2
  • 136
    • 0032075496 scopus 로고    scopus 로고
    • Self-organization of spiking neurons using action potential timing
    • Ruf, B., & Schmitt, M. (1998). Self-organization of spiking neurons using action potential timing. IEEE Transactions on Neural Networks, 9(3), 575-578.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.3 , pp. 575-578
    • Ruf, B.1    Schmitt, M.2
  • 140
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single layer linear feedforward network
    • Sanger, T. D. (1989). Optimal unsupervised learning in a single layer linear feedforward network. Neural Networks, 2, 459-473.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.D.1
  • 141
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history compression. Neural Computation, 4(2), 234-242.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 142
    • 0039238512 scopus 로고    scopus 로고
    • Semilinear predictability minimization produces well-known feature detectors
    • Schmidhuber, J., Eldracher, M., & Foltin, B. (1996). Semilinear predictability minimization produces well-known feature detectors. Neural Computation, 8, 773-786.
    • (1996) Neural Computation , vol.8 , pp. 773-786
    • Schmidhuber, J.1    Eldracher, M.2    Foltin, B.3
  • 143
    • 84976936434 scopus 로고
    • View-based cognitive mapping and path planning
    • Schölkopf, B., & Mallot, H. A. (1995). View-based cognitive mapping and path planning. Adaptive Behavior, 3, 311-348.
    • (1995) Adaptive Behavior , vol.3 , pp. 311-348
    • Schölkopf, B.1    Mallot, H.A.2
  • 144
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 145
    • 0041016997 scopus 로고
    • Unsupervised discrimination of clustered data via optimization of binary information gain
    • S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.). San Mateo, CA: Morgan Kaufmann
    • Schraudolph, N. N., & Sejnowski, T. J. (1993). Unsupervised discrimination of clustered data via optimization of binary information gain. In S. J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems, 5 (pp. 499-506). San Mateo, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 499-506
    • Schraudolph, N.N.1    Sejnowski, T.J.2
  • 146
    • 0004777912 scopus 로고
    • Learning aspect graph representations from view sequences
    • D. S. Touretzky (Ed.). San Mateo, CA: Morgan Kaufmann
    • Seibert, M. C., & Waxman, A. M. (1990). Learning aspect graph representations from view sequences. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 258-265). San Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 258-265
    • Seibert, M.C.1    Waxman, A.M.2
  • 147
    • 0017745276 scopus 로고
    • Strong covariance with nonlinearly interacting neurons
    • Sejnowski, T. (1977). Strong covariance with nonlinearly interacting neurons. Journal of Mathematical Biology, 4, 303-321.
    • (1977) Journal of Mathematical Biology , vol.4 , pp. 303-321
    • Sejnowski, T.1
  • 148
    • 0033885918 scopus 로고    scopus 로고
    • Temporal learning rule and dynamic neural network model
    • Shigematsu, Y., & Matsumoto, G. (2000). Temporal learning rule and dynamic neural network model. Applied Mathematics and Computation, 111(2-3), 209-218.
    • (2000) Applied Mathematics and Computation , vol.111 , Issue.2-3 , pp. 209-218
    • Shigematsu, Y.1    Matsumoto, G.2
  • 151
    • 0033365847 scopus 로고    scopus 로고
    • Self-organizing maps and learning vector quantization for feature sequences
    • rffrt Somervuo, P., & Kohonen, T. (1999). Self-organizing maps and learning vector quantization for feature sequences. Neural Processing Letters, 10, 151-159.
    • (1999) Neural Processing Letters , vol.10 , pp. 151-159
    • Somervuo, P.1    Kohonen, T.2
  • 152
    • 0001553626 scopus 로고
    • Temporal association in asymmetric neural networks
    • Sompolinsky, H., & Kanter, I. (1986). Temporal association in asymmetric neural networks. Physics Review Letters, 57, 2861-2864.
    • (1986) Physics Review Letters , vol.57 , pp. 2861-2864
    • Sompolinsky, H.1    Kanter, I.2
  • 153
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hebbian learning through spiketime-dependent synaptic plasticity
    • Song, S., Miller, K., & Abbott, L. (2000). Competitive Hebbian learning through spiketime-dependent synaptic plasticity. Nature Neuroscience, 3, 919-926.
    • (2000) Nature Neuroscience , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.2    Abbott, L.3
  • 154
    • 0033100649 scopus 로고    scopus 로고
    • A topological and temporal correlator network for spatiotemporal pattern learning, recognition, and recall
    • Srinivasa, N., & Ahuja, N. (1999). A topological and temporal correlator network for spatiotemporal pattern learning, recognition, and recall. IEEE Transactions on Neural Networks, 10(2), 356-371.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.2 , pp. 356-371
    • Srinivasa, N.1    Ahuja, N.2
  • 155
    • 0043278952 scopus 로고    scopus 로고
    • The Guelph cluster class (GCC) system - A SOM/BP hybrid network that uses unclassified data to improve classification performance
    • Stacey, D. A., Dara, R., & Kremer, S. C. (2000). The Guelph cluster class (GCC) system - a SOM/BP hybrid network that uses unclassified data to improve classification performance. In Artificial Neural Networks in Engineering (ANNIE'2000) (pp. 179-184).
    • (2000) Artificial Neural Networks in Engineering (ANNIE'2000) , pp. 179-184
    • Stacey, D.A.1    Dara, R.2    Kremer, S.C.3
  • 156
    • 0030265917 scopus 로고    scopus 로고
    • Learning perceptually salient visual parameters using spatiotemporal smoothness constraints
    • Stone, J. (1996). Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Computation, 8(7), 1463-1492.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1463-1492
    • Stone, J.1
  • 157
    • 0040357675 scopus 로고
    • A learning rule for extracting spatio-temporal invariances
    • Stone, J., & Bray, A. (1995). A learning rule for extracting spatio-temporal invariances. Network: Computation in Neural Systems, 6(3), 429-436.
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 429-436
    • Stone, J.1    Bray, A.2
  • 158
    • 0019537951 scopus 로고
    • Toward a modern theory of adaptive networks: Expectation and prediction
    • Sutton, R. S., & Barto, A. G. (1981). Toward a modern theory of adaptive networks: Expectation and prediction. Psychological Review, 88(2), 135-170.
    • (1981) Psychological Review , vol.88 , Issue.2 , pp. 135-170
    • Sutton, R.S.1    Barto, A.G.2
  • 160
    • 0040968017 scopus 로고
    • Self-organization in the time domain
    • M. A. Arbib (Ed.). Cambridge, MA: MIT Press
    • Taylor, J. G. (1995). Self-organization in the time domain. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 843-846). Cambridge, MA: MIT Press.
    • (1995) The Handbook of Brain Theory and Neural Networks , pp. 843-846
    • Taylor, J.G.1
  • 161
    • 0022986574 scopus 로고
    • Simple neural models of classical conditioning
    • Tesauro, G. (1986). Simple neural models of classical conditioning. Biological Cybernetics, 55, 187-200.
    • (1986) Biological Cybernetics , vol.55 , pp. 187-200
    • Tesauro, G.1
  • 163
    • 77952553565 scopus 로고    scopus 로고
    • Empirical entropy manipulation for real-world problems
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.). Cambridge, MA: MIT Press
    • Viola, P. A., Schraudolph, N. N., & Sejnowski, T. J. (1996). Empirical entropy manipulation for real-world problems. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems, 8 (pp. 851-857). Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 851-857
    • Viola, P.A.1    Schraudolph, N.N.2    Sejnowski, T.J.3
  • 165
    • 0030476783 scopus 로고    scopus 로고
    • Using spatio-temporal correlations to learn invariant object recognition
    • Wallis, G. (1996). Using spatio-temporal correlations to learn invariant object recognition. Neural Networks, 9(9), 1513-1519.
    • (1996) Neural Networks , vol.9 , Issue.9 , pp. 1513-1519
    • Wallis, G.1
  • 166
    • 26444477707 scopus 로고    scopus 로고
    • Spatio-temporal influences in object recognition
    • Wallis, G. (1998). Spatio-temporal influences in object recognition. Network Computation in Neural Systems, 9, 265-278.
    • (1998) Network Computation in Neural Systems , vol.9 , pp. 265-278
    • Wallis, G.1
  • 167
    • 0031569902 scopus 로고    scopus 로고
    • Optimal unsupervised learning in invariant object recognition
    • Wallis, G., & Baddeley, R. (1997). Optimal unsupervised learning in invariant object recognition. Neural Computation, 9(4), 959-970.
    • (1997) Neural Computation , vol.9 , Issue.4 , pp. 959-970
    • Wallis, G.1    Baddeley, R.2
  • 169
    • 0025488662 scopus 로고
    • Complex temporal sequence learning based on short-term memory
    • Wang, D. L., & Arbib, M. A. (1990). Complex temporal sequence learning based on short-term memory. IEEE Proceedings, 78, 1536-1543.
    • (1990) IEEE Proceedings , vol.78 , pp. 1536-1543
    • Wang, D.L.1    Arbib, M.A.2
  • 171
    • 0001637805 scopus 로고    scopus 로고
    • Incremental learning of complex temporal patterns
    • Wang, D. L., & Yuwono, B. (1996). Incremental learning of complex temporal patterns. IEEE Transactions on Neural Networks, 7(6), 1465-1481.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1465-1481
    • Wang, D.L.1    Yuwono, B.2
  • 173
    • 0033716741 scopus 로고    scopus 로고
    • Temporal BYY learning for state space approach, hidden Markov model, and blind source separation
    • Xu, L. (2000). Temporal BYY learning for state space approach, hidden Markov model, and blind source separation. IEEE Transactions on Signal Processing, 48(7), 2132-2144.
    • (2000) IEEE Transactions on Signal Processing , vol.48 , Issue.7 , pp. 2132-2144
    • Xu, L.1
  • 174
    • 0035391741 scopus 로고    scopus 로고
    • BYY harmony learning, independent state space, and generalized APT financial analyses
    • Xu, L. (2001). BYY harmony learning, independent state space, and generalized APT financial analyses. IEEE Transactions on Neural Networks, 12(4), 822-849.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 822-849
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.