-
2
-
-
21544450961
-
-
W.W. Mullins, J. Appl. Phys. 28, 333 (1957); 36, 77 (1959).
-
(1959)
J. Appl. Phys.
, vol.36
, pp. 77
-
-
-
4
-
-
0000694022
-
-
A. Ichimiya, K. Hayashi, E.D. Williams, T.L. Einstein, M. Uwaha, and K. Watanabe, Phys. Rev. Lett. 84, 3662 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 3662
-
-
Ichimiya, A.1
Hayashi, K.2
Williams, E.D.3
Einstein, T.L.4
Uwaha, M.5
Watanabe, K.6
-
7
-
-
0026820038
-
-
C. Alfonso, J.M. Bermond, J.C. Heyraud, and J.J. Métois, Surf. Sci. 262, 371 (1992).
-
(1992)
Surf. Sci.
, vol.262
, pp. 371
-
-
Alfonso, C.1
Bermond, J.M.2
Heyraud, J.C.3
Métois, J.J.4
-
9
-
-
0346107658
-
-
N.C. Bartelt, J.L. Goldberg, T.L. Einstein, Ellen D. Williams, J.C. Heyraud, and J.J. Métois, Phys. Rev. B 48, 15 453 (1993).
-
(1993)
Phys. Rev. B
, vol.48
, pp. 15453
-
-
Bartelt, N.C.1
Goldberg, J.L.2
Einstein, T.L.3
Williams, E.D.4
Heyraud, J.C.5
Métois, J.J.6
-
12
-
-
0027657014
-
-
A. Pimpinelli, J. Villain, D.E. Wolf, J.J. Métois, J.C. Heyraud, I. Elkinani, and G. Uimin, Surf. Sci. 295, 143 (1993).
-
(1993)
Surf. Sci.
, vol.295
, pp. 143
-
-
Pimpinelli, A.1
Villain, J.2
Wolf, D.E.3
Métois, J.J.4
Heyraud, J.C.5
Elkinani, I.6
Uimin, G.7
-
13
-
-
0034899104
-
-
H. Hibino, C.-W. Hu, T. Ogino, and I.S.T. Tsong, Phys. Rev. B 63, 245402 (2001), which provides a thorough discussion of work subsequent to Ref. 8.
-
(2001)
Phys. Rev. B
, vol.63
, pp. 245402
-
-
Hibino, H.1
Hu, C.-W.2
Ogino, T.3
Tsong, I.S.T.4
-
15
-
-
0024682710
-
-
A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, and S.I. Stenin, Phys. Status Solidi A 113, 421 (1989).
-
(1989)
Phys. Status Solidi A
, vol.113
, pp. 421
-
-
Latyshev, A.V.1
Aseev, A.L.2
Krasilnikov, A.B.3
Stenin, S.I.4
-
16
-
-
0032184459
-
-
J.M. Bermond, J.J. Métois, J.C. Heyraud, and F. Floret, Surf. Sci. 416, 430 (1998).
-
(1998)
Surf. Sci.
, vol.416
, pp. 430
-
-
Bermond, J.M.1
Métois, J.J.2
Heyraud, J.C.3
Floret, F.4
-
19
-
-
84988788804
-
-
note
-
From Fig. 6 of Ref. 16 we find this ratio to be 44% and 51% for the (211) and (211) steps, respectively. Although Ref. 8 did not distinguish between (211) and (211) steps, Fig. 6 was calibrated by assuming that Ref. 8 studied (211).
-
-
-
-
22
-
-
0002044112
-
-
H.L. Richards, S.D. Cohen, T.L. Einstein, and M. Giesen, Surf. Sci. 453, 59 (2000).
-
(2000)
Surf. Sci.
, vol.453
, pp. 59
-
-
Richards, H.L.1
Cohen, S.D.2
Einstein, T.L.3
Giesen, M.4
-
23
-
-
0035501511
-
-
T.L. Einstein, H.L. Richards, S.D. Cohen, and O. Pierre-Louis, Surf. Sci. 493, 460 (2001).
-
(2001)
Surf. Sci.
, vol.493
, pp. 460
-
-
Einstein, T.L.1
Richards, H.L.2
Cohen, S.D.3
Pierre-Louis, O.4
-
25
-
-
84988786089
-
-
note
-
In studying physical (in contrast to Monte Carlo) data, it is usually best to perform a two-parameter fit in terms of o and an effective mean step separation rather than a single-parameter fit just to o (Ref. 21).
-
-
-
-
27
-
-
24844447275
-
-
B. Sutherland, J. Math. Phys. 12, 246 (1971); Phys. Rev. A 4, 2019 (1971).
-
(1971)
Phys. Rev. A
, vol.4
, pp. 2019
-
-
-
28
-
-
84988780862
-
-
note
-
Conventionally, the TWD is fit to a Gaussian, from which the variance is gauged via the width at half maximum. This technique provides an adequate approximation if à is not too weak (Ref. 21). However, since Eq. (4) is barely more complicated than a Gaussian, there is little to recommend the Gaussian method (except tradition).
-
-
-
-
29
-
-
3743097100
-
-
See, e. g., B. Joós, T.L. Einstein, and N.C. Bartelt, Phys. Rev. B 43, 8153 (1991).
-
(1991)
Phys. Rev. B
, vol.43
, pp. 8153
-
-
Joós, B.1
Einstein, T.L.2
Bartelt, N.C.3
-
30
-
-
0042929806
-
-
P.J. Forrester, Nucl. Phys. B 388, 671 (1992); J. Stat. Phys. 72, 39 (1993).
-
(1992)
Nucl. Phys. B
, vol.388
, pp. 671
-
-
Forrester, P.J.1
-
31
-
-
0042929806
-
-
P.J. Forrester, Nucl. Phys. B 388, 671 (1992); J. Stat. Phys. 72, 39 (1993).
-
(1993)
J. Stat. Phys.
, vol.72
, pp. 39
-
-
-
34
-
-
0003498504
-
-
Academic Press, San Diego
-
I. S. Gradsteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, San Diego, 1980).
-
(1980)
Table of Integrals, Series, and Products
-
-
Gradsteyn, I.S.1
Ryzhik, I.M.2
-
35
-
-
0000376116
-
-
See also F. Lesage, V. Pasquier, and D. Serban, Nucl. Phys. B 435[FS], 585 (1995). Moreover, Z.N.C. Ha, ibid. 435[FS], 604 (1995) presents an exact solution for an arbitrary value of o. Unfortunately, this solution does not appear to be computationally tractable.
-
(1995)
Nucl. Phys. B
, vol.435 FS
, pp. 585
-
-
Lesage, F.1
Pasquier, V.2
Serban, D.3
-
36
-
-
11544254890
-
-
See also F. Lesage, V. Pasquier, and D. Serban, Nucl. Phys. B 435[FS], 585 (1995). Moreover, Z.N.C. Ha, ibid. 435[FS], 604 (1995) presents an exact solution for an arbitrary value of o. Unfortunately, this solution does not appear to be computationally tractable.
-
(1995)
Nucl. Phys. B
, vol.435 FS
, pp. 604
-
-
Ha, Z.N.C.1
-
38
-
-
44949288782
-
-
For this Ã-in contrast to larger values (Ref. 22) the use of Eq. (4) makes negligible difference from the Gruber-Mullins analysis (Refs. 2,6 and 15) formulated in N.C. Bartelt, T.L. Einstein, and E.D. Williams, Surf. Sci. 240, L591 (1990).
-
(1990)
Surf. Sci.
, vol.240
, pp. L591
-
-
Bartelt, N.C.1
Einstein, T.L.2
Williams, E.D.3
-
40
-
-
0035919893
-
-
M. Degawa, K. Thürmer, I. Morishima, H. Minoda, K. Yagi, and E.D. Williams, Surf. Sci. 487, 171 (2001), and references therein.
-
(2001)
Surf. Sci.
, vol.487
, pp. 171
-
-
Degawa, M.1
Thürmer, K.2
Morishima, I.3
Minoda, H.4
Yagi, K.5
Williams, E.D.6
-
43
-
-
0012063147
-
-
O. Pierre-Louis and C. Misbah, Phys. Rev. Lett. 76, 4761 (1996); Phys. Rev. B 58, 2259 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 2259
-
-
-
44
-
-
0031198681
-
-
E.S. Fu, D.-J. Liu, M.D. Johnson, J.D. Weeks, and E.D. Williams, Surf. Sci. 385, 259 (1997).
-
(1997)
Surf. Sci.
, vol.385
, pp. 259
-
-
Fu, E.S.1
Liu, D.-J.2
Johnson, M.D.3
Weeks, J.D.4
Williams, E.D.5
-
48
-
-
0037141459
-
-
A. Pimpinelli, V. Tonchev, A. Videcoq, and M. Vladimirova, Phys. Rev. Lett. 88, 206103 (2002).
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 206103
-
-
Pimpinelli, A.1
Tonchev, V.2
Videcoq, A.3
Vladimirova, M.4
-
49
-
-
84988786041
-
-
note
-
More generally, step bunching presumably also involves an altered form of the step-step interaction from an inverse-square dependence on separation. For the point of this simple argument, we ignore this complication.
-
-
-
-
52
-
-
0031185932
-
-
M. Giesen, M. Dietterle, D. Stapel, H. Ibach, and D.M. Kolb, Surf. Sci. 384, 168 (1997).
-
(1997)
Surf. Sci.
, vol.384
, pp. 168
-
-
Giesen, M.1
Dietterle, M.2
Stapel, D.3
Ibach, H.4
Kolb, D.M.5
-
54
-
-
84988770173
-
-
note
-
-2 dependence of the offset seems compatible.
-
-
-
|