메뉴 건너뛰기




Volumn 12, Issue 6, 2002, Pages 709-720

Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis

Author keywords

[No Author keywords available]

Indexed keywords

MOLYBDENUM; NICOTINAMIDE ADENINE DINUCLEOTIDE;

EID: 0036918074     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-440X(02)00385-8     Document Type: Review
Times cited : (49)

References (74)
  • 2
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin S.J., Defossez P.A., Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 289:2000;2126-2128.
    • (2000) Science , vol.289 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 3
    • 0034023238 scopus 로고    scopus 로고
    • New functions of a long-known molecule. Emerging roles of NAD in cellular signaling
    • A review underlying the emerging roles of NAD(P) in a variety of relevant physiological processes.
    • Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem. 267:2000;1550-1564. A review underlying the emerging roles of NAD(P) in a variety of relevant physiological processes.
    • (2000) Eur J Biochem , vol.267 , pp. 1550-1564
    • Ziegler, M.1
  • 7
    • 0025983512 scopus 로고
    • Novel aspects of the biochemistry of the molybdenum cofactor
    • Rajagopalan K.V. Novel aspects of the biochemistry of the molybdenum cofactor. Adv Enzymol. 64:1991;215-290.
    • (1991) Adv Enzymol , vol.64 , pp. 215-290
    • Rajagopalan, K.V.1
  • 8
    • 0026669725 scopus 로고
    • The pterin molybdenum cofactors
    • Rajagopalan K.V., Johnson J.L. The pterin molybdenum cofactors. J Biol Chem. 267:1992;10199-10202.
    • (1992) J Biol Chem , vol.267 , pp. 10199-10202
    • Rajagopalan, K.V.1    Johnson, J.L.2
  • 9
    • 0028202893 scopus 로고
    • The reaction mechanism of oxomolybdenum enzymes
    • Hille R. The reaction mechanism of oxomolybdenum enzymes. Biochim Biophys Acta. 1184:1994;143-169.
    • (1994) Biochim Biophys Acta , vol.1184 , pp. 143-169
    • Hille, R.1
  • 10
    • 0036365692 scopus 로고    scopus 로고
    • Molybdenum enzymes containing the pyranopterin cofactor: An overview
    • Hille R. Molybdenum enzymes containing the pyranopterin cofactor: an overview. Met Ions Biol Syst. 39:2002;187-226.
    • (2002) Met Ions Biol Syst , vol.39 , pp. 187-226
    • Hille, R.1
  • 13
    • 0027480074 scopus 로고
    • Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea
    • Johnson J.L., Rajagopalan K.V., Mukund S., Adams M.W. Identification of molybdopterin as the organic component of the tungsten cofactor in four enzymes from hyperthermophilic Archaea. J Biol Chem. 268:1993;4848-4852.
    • (1993) J Biol Chem , vol.268 , pp. 4848-4852
    • Johnson, J.L.1    Rajagopalan, K.V.2    Mukund, S.3    Adams, M.W.4
  • 15
    • 0003079254 scopus 로고
    • Molybdenum cofactor deficiency
    • C.R. Scriver, A.L. Beaudet, W.S. Sly, & D.L. Valle. McGraw-Hill
    • Johnson J.L., Wadman S.K. Molybdenum cofactor deficiency. Scriver C.R., Beaudet A.L., Sly W.S., Valle D.L. The Metabolic Basis Of Inherited Disease. 6. Ed:1989;1463-1475 McGraw-Hill.
    • (1989) The Metabolic Basis Of Inherited Disease 6. Ed , pp. 1463-1475
    • Johnson, J.L.1    Wadman, S.K.2
  • 16
    • 0034058082 scopus 로고    scopus 로고
    • Genetics of molybdenum cofactor deficiency
    • Reiss J. Genetics of molybdenum cofactor deficiency. Hum Genet. 106:2000;157-163.
    • (2000) Hum Genet , vol.106 , pp. 157-163
    • Reiss, J.1
  • 18
    • 0032436716 scopus 로고    scopus 로고
    • Genomic structure and mutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A
    • Reiss J., Christensen E., Kurlemann G., Zabot M.T., Dorche C. Genomic structure and mutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A. Hum Genet. 103:1998;639-644.
    • (1998) Hum Genet , vol.103 , pp. 639-644
    • Reiss, J.1    Christensen, E.2    Kurlemann, G.3    Zabot, M.T.4    Dorche, C.5
  • 20
    • 0032934878 scopus 로고    scopus 로고
    • Molybdenum cofactor deficiency: First prenatal genetic analysis
    • Reiss J., Christensen E., Dorche C. Molybdenum cofactor deficiency: first prenatal genetic analysis. Prenat Diagn. 19:1999;386-388.
    • (1999) Prenat Diagn , vol.19 , pp. 386-388
    • Reiss, J.1    Christensen, E.2    Dorche, C.3
  • 21
    • 0033237812 scopus 로고    scopus 로고
    • Human molybdopterin synthase gene: Genomic structure and mutations in molybdenum cofactor deficiency type B
    • Reiss J., Dorche C., Stallmeyer B., Mendel R.R., Cohen N., Zabot M.T. Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B. Am J Hum Genet. 64:1999;706-711.
    • (1999) Am J Hum Genet , vol.64 , pp. 706-711
    • Reiss, J.1    Dorche, C.2    Stallmeyer, B.3    Mendel, R.R.4    Cohen, N.5    Zabot, M.T.6
  • 22
    • 0035166780 scopus 로고    scopus 로고
    • A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency
    • Reiss J., Gross-Hardt S., Christensen E., Schmidt P., Mendel R.R., Schwarz G. A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet. 68:2001;208-213.
    • (2001) Am J Hum Genet , vol.68 , pp. 208-213
    • Reiss, J.1    Gross-Hardt, S.2    Christensen, E.3    Schmidt, P.4    Mendel, R.R.5    Schwarz, G.6
  • 23
    • 0030868420 scopus 로고    scopus 로고
    • Biosynthesis and processing of the molybdenum cofactors
    • Rajagopalan K.V. Biosynthesis and processing of the molybdenum cofactors. Biochem Soc Trans. 25:1997;757-761.
    • (1997) Biochem Soc Trans , vol.25 , pp. 757-761
    • Rajagopalan, K.V.1
  • 25
    • 0028819468 scopus 로고
    • Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labelling studies
    • Wuebbens M.M., Rajagopalan K.V. Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labelling studies. J Biol Chem. 270:1995;1082-1087.
    • (1995) J Biol Chem , vol.270 , pp. 1082-1087
    • Wuebbens, M.M.1    Rajagopalan, K.V.2
  • 26
    • 0027500718 scopus 로고
    • The biosynthesis of molybdopterin in Escherichia coli
    • Pitterle D.M., Rajagopalan K.V. The biosynthesis of molybdopterin in Escherichia coli. J Biol Chem. 268:1993;13499-13505.
    • (1993) J Biol Chem , vol.268 , pp. 13499-13505
    • Pitterle, D.M.1    Rajagopalan, K.V.2
  • 27
    • 0027490597 scopus 로고
    • In vitro synthesis of molybdopterin from precursor Z using purified converting factor
    • Pitterle D.M., Johnson J.L., Rajagopalan K.V. In vitro synthesis of molybdopterin from precursor Z using purified converting factor. J Biol Chem. 268:1993;13506-13509.
    • (1993) J Biol Chem , vol.268 , pp. 13506-13509
    • Pitterle, D.M.1    Johnson, J.L.2    Rajagopalan, K.V.3
  • 28
    • 0034677757 scopus 로고    scopus 로고
    • A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes
    • Furukawa K., Mizushima N., Noda T., Ohsumi Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J Biol Chem. 275:2000;7462-7465.
    • (2000) J Biol Chem , vol.275 , pp. 7462-7465
    • Furukawa, K.1    Mizushima, N.2    Noda, T.3    Ohsumi, Y.4
  • 29
    • 0031891276 scopus 로고    scopus 로고
    • Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli
    • Hasona A., Ray R.M., Shanmugam K.T. Physiological and genetic analyses leading to identification of a biochemical role for the moeA (molybdate metabolism) gene product in Escherichia coli. J Bacteriol. 180:1998;1466-1472.
    • (1998) J Bacteriol , vol.180 , pp. 1466-1472
    • Hasona, A.1    Ray, R.M.2    Shanmugam, K.T.3
  • 30
    • 0029898124 scopus 로고    scopus 로고
    • Molybdenum cofactor biosynthesis in Escherichia coli mog mutants
    • Joshi M.S., Johnson J.L., Rajagopalan K.V. Molybdenum cofactor biosynthesis in Escherichia coli mog mutants. J Bacteriol. 178:1996;4310-4312.
    • (1996) J Bacteriol , vol.178 , pp. 4310-4312
    • Joshi, M.S.1    Johnson, J.L.2    Rajagopalan, K.V.3
  • 32
    • 0028998303 scopus 로고
    • The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton
    • Kirsch J., Betz H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J Neurosci. 15:1995;4148-4156.
    • (1995) J Neurosci , vol.15 , pp. 4148-4156
    • Kirsch, J.1    Betz, H.2
  • 34
    • 33644665247 scopus 로고    scopus 로고
    • Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin
    • Essrich C., Lorez M., Benson J.A., Fritschy J.M., Luscher B. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci. 1:1998;563-571.
    • (1998) Nat Neurosci , vol.1 , pp. 563-571
    • Essrich, C.1    Lorez, M.2    Benson, J.A.3    Fritschy, J.M.4    Luscher, B.5
  • 36
    • 0033994755 scopus 로고    scopus 로고
    • Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin
    • Kins S., Betz H., Kirsch J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat Neurosci. 3:2000;22-29.
    • (2000) Nat Neurosci , vol.3 , pp. 22-29
    • Kins, S.1    Betz, H.2    Kirsch, J.3
  • 37
    • 0034682461 scopus 로고    scopus 로고
    • The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse
    • Kneussel M., Haverkamp S., Fuhrmann J.C., Wang H., Wassle H., Olsen R.W., Betz H. The gamma-aminobutyric acid type A receptor (GABAAR)-associated protein GABARAP interacts with gephyrin but is not involved in receptor anchoring at the synapse. Proc Natl Acad Sci USA. 97:2000;8594-8599.
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 8594-8599
    • Kneussel, M.1    Haverkamp, S.2    Fuhrmann, J.C.3    Wang, H.4    Wassle, H.5    Olsen, R.W.6    Betz, H.7
  • 40
    • 0032514872 scopus 로고    scopus 로고
    • Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity
    • Feng G., Tintrup H., Kirsch J., Nichol M.C., Kuhse J., Betz H., Sanes J.R. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science. 282:1998;1321-1324.
    • (1998) Science , vol.282 , pp. 1321-1324
    • Feng, G.1    Tintrup, H.2    Kirsch, J.3    Nichol, M.C.4    Kuhse, J.5    Betz, H.6    Sanes, J.R.7
  • 41
    • 0025228504 scopus 로고
    • Molybdopterin guanine dinucleotide - a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl-sulfoxide reductase from Rhodobacter sphaeroides forma-specialis-denitrificans
    • Johnson J.L., Bastian N.R., Rajagopalan K.V. Molybdopterin guanine dinucleotide - a modified form of molybdopterin identified in the molybdenum cofactor of dimethyl-sulfoxide reductase from Rhodobacter sphaeroides forma-specialis-denitrificans. Proc Natl Acad Sci USA. 87:1990;3190-3194.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 3190-3194
    • Johnson, J.L.1    Bastian, N.R.2    Rajagopalan, K.V.3
  • 42
    • 0029882611 scopus 로고    scopus 로고
    • Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli
    • Palmer T., Santini C.L., Iobbi-Nivol C., Eaves D.J., Boxer D.H., Giordano G. Involvement of the narJ and mob gene products in distinct steps in the biosynthesis of the molybdoenzyme nitrate reductase in Escherichia coli. Mol Microbiol. 20:1996;875-884.
    • (1996) Mol Microbiol , vol.20 , pp. 875-884
    • Palmer, T.1    Santini, C.L.2    Iobbi-Nivol, C.3    Eaves, D.J.4    Boxer, D.H.5    Giordano, G.6
  • 43
    • 0028338273 scopus 로고
    • Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli
    • Palmer T., Vasishta A., Whitty P.W., Boxer D.H. Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Eur J Biochem. 222:1994;687-692.
    • (1994) Eur J Biochem , vol.222 , pp. 687-692
    • Palmer, T.1    Vasishta, A.2    Whitty, P.W.3    Boxer, D.H.4
  • 44
    • 0034704163 scopus 로고    scopus 로고
    • The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis
    • 2+·GTP, and provides insights into the function and catalytic mechanism of the MobA protein.
    • 2+·GTP, and provides insights into the function and catalytic mechanism of the MobA protein.
    • (2000) J Biol Chem , vol.275 , pp. 40211-40217
    • Lake, M.W.1    Temple, C.A.2    Rajagopalan, K.V.3    Schindelin, H.4
  • 45
    • 0035891318 scopus 로고    scopus 로고
    • Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex
    • The structures presented in this paper define the architecture and reaction mechanism of members of the E1 enzyme superfamily.
    • Lake M.W., Wuebbens M.M., Rajagopalan K.V., Schindelin H. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature. 414:2001;325-329. The structures presented in this paper define the architecture and reaction mechanism of members of the E1 enzyme superfamily.
    • (2001) Nature , vol.414 , pp. 325-329
    • Lake, M.W.1    Wuebbens, M.M.2    Rajagopalan, K.V.3    Schindelin, H.4
  • 46
    • 0034695475 scopus 로고    scopus 로고
    • Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli
    • Liu M.T., Wuebbens M.M., Rajagopalan K.V., Schindelin H. Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. J Biol Chem. 275:2000;1814-1822.
    • (2000) J Biol Chem , vol.275 , pp. 1814-1822
    • Liu, M.T.1    Wuebbens, M.M.2    Rajagopalan, K.V.3    Schindelin, H.4
  • 47
    • 0035167185 scopus 로고    scopus 로고
    • Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation
    • This study defines the evolutionary relationship between the sulfur incorporation step during Moco biosynthesis and the mechanism of ubiquitin activation.
    • Rudolph M.J., Wuebbens M.M., Rajagopalan K.V., Schindelin H. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol. 8:2001;42-46. This study defines the evolutionary relationship between the sulfur incorporation step during Moco biosynthesis and the mechanism of ubiquitin activation.
    • (2001) Nat Struct Biol , vol.8 , pp. 42-46
    • Rudolph, M.J.1    Wuebbens, M.M.2    Rajagopalan, K.V.3    Schindelin, H.4
  • 49
    • 0035860322 scopus 로고    scopus 로고
    • Crystal structures of human gephyrin and plant Cnx1 G domains: Comparative analysis and functional implications
    • Schwarz G., Schrader N., Mendel R.R., Hecht H.J., Schindelin H. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications. J Mol Biol. 312:2001;405-418.
    • (2001) J Mol Biol , vol.312 , pp. 405-418
    • Schwarz, G.1    Schrader, N.2    Mendel, R.R.3    Hecht, H.J.4    Schindelin, H.5
  • 50
    • 0035816706 scopus 로고    scopus 로고
    • X-ray crystal structure of the trimeric N-terminal domain of gephyrin
    • Sola M., Kneussel M., Heck I.S., Betz H., Weissenhorn W. X-ray crystal structure of the trimeric N-terminal domain of gephyrin. J Biol Chem. 276:2001;25294-25301.
    • (2001) J Biol Chem , vol.276 , pp. 25294-25301
    • Sola, M.1    Kneussel, M.2    Heck, I.S.3    Betz, H.4    Weissenhorn, W.5
  • 51
    • 0034435586 scopus 로고    scopus 로고
    • Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution
    • Stevenson C.E., Sargent F., Buchanan G., Palmer T., Lawson D.M. Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atomic resolution. Struct Fold Des. 8:2000;1115-1125.
    • (2000) Struct Fold Des , vol.8 , pp. 1115-1125
    • Stevenson, C.E.1    Sargent, F.2    Buchanan, G.3    Palmer, T.4    Lawson, D.M.5
  • 52
    • 0034661492 scopus 로고    scopus 로고
    • Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC
    • Wuebbens M.M., Liu M.T., Rajagopalan K., Schindelin H. Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Struct Fold Des. 8:2000;709-718.
    • (2000) Struct Fold Des , vol.8 , pp. 709-718
    • Wuebbens, M.M.1    Liu, M.T.2    Rajagopalan, K.3    Schindelin, H.4
  • 53
    • 0034880831 scopus 로고    scopus 로고
    • The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin
    • The authors incorporate the structural data on MogA and MoeA to postulate a model for the hexagonal scaffold formed by gephyrin.
    • Xiang S., Nichols J., Rajagopalan K.V., Schindelin H. The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure. 9:2001;299-310. The authors incorporate the structural data on MogA and MoeA to postulate a model for the hexagonal scaffold formed by gephyrin.
    • (2001) Structure , vol.9 , pp. 299-310
    • Xiang, S.1    Nichols, J.2    Rajagopalan, K.V.3    Schindelin, H.4
  • 54
    • 0035282866 scopus 로고    scopus 로고
    • Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: Functional characterization using new analysis and information visualization methods
    • Sofia H.J., Chen G., Hetzler B.G., Reyes-Spindola J.F., Miller N.E. Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res. 29:2001;1097-1106.
    • (2001) Nucleic Acids Res , vol.29 , pp. 1097-1106
    • Sofia, H.J.1    Chen, G.2    Hetzler, B.G.3    Reyes-Spindola, J.F.4    Miller, N.E.5
  • 55
    • 0034792676 scopus 로고    scopus 로고
    • Radical mechanisms of S-adenosylmethionine-dependent enzymes
    • Frey P.A., Booker S.J. Radical mechanisms of S-adenosylmethionine-dependent enzymes. Adv Protein Chem. 58:2001;1-45.
    • (2001) Adv Protein Chem , vol.58 , pp. 1-45
    • Frey, P.A.1    Booker, S.J.2
  • 56
    • 0035170874 scopus 로고    scopus 로고
    • Solution structure of ThiS and implications for the evolutionary roots of ubiquitin
    • This study defines the evolutionary relationship between the sulfur incorporation step during thiamine biosynthesis and the mechanism of ubiquitin activation.
    • Wang C., Xi J., Begley T.P., Nicholson L.K. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat Struct Biol. 8:2001;47-51. This study defines the evolutionary relationship between the sulfur incorporation step during thiamine biosynthesis and the mechanism of ubiquitin activation.
    • (2001) Nat Struct Biol , vol.8 , pp. 47-51
    • Wang, C.1    Xi, J.2    Begley, T.P.3    Nicholson, L.K.4
  • 57
    • 0035933851 scopus 로고    scopus 로고
    • A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli
    • Leimkuhler S., Rajagopalan K.V. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem. 276:2001;22024-22031.
    • (2001) J Biol Chem , vol.276 , pp. 22024-22031
    • Leimkuhler, S.1    Rajagopalan, K.V.2
  • 58
    • 0037022788 scopus 로고    scopus 로고
    • Structure of FAD-bound L-aspartate oxidase: Insight into substrate specificity and catalysis
    • This paper provides important observations for understanding the catalytic mechanism of LASPO with relevance to the succinate dehydrogenase/fumarate reductase family.
    • Bossi R.T., Negri A., Tedeschi G., Mattevi A. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. Biochemistry. 41:2002;3018-3024. This paper provides important observations for understanding the catalytic mechanism of LASPO with relevance to the succinate dehydrogenase/fumarate reductase family.
    • (2002) Biochemistry , vol.41 , pp. 3018-3024
    • Bossi, R.T.1    Negri, A.2    Tedeschi, G.3    Mattevi, A.4
  • 59
    • 0001406338 scopus 로고    scopus 로고
    • Structure of L-aspartate oxidase: Implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family
    • Mattevi A., Tedeschi G., Bacchella L., Coda A., Negri A., Ronchi S. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. Struct Fold Des. 7:1999;745-756.
    • (1999) Struct Fold Des , vol.7 , pp. 745-756
    • Mattevi, A.1    Tedeschi, G.2    Bacchella, L.3    Coda, A.4    Negri, A.5    Ronchi, S.6
  • 61
    • 0031568330 scopus 로고    scopus 로고
    • A new function for a common fold: The crystal structure of quinolinic acid phosphoribosyltransferase
    • Eads J.C., Ozturk D., Wexler T.B., Grubmeyer C., Sacchettini J.C. A new function for a common fold: the crystal structure of quinolinic acid phosphoribosyltransferase. Structure. 5:1997;47-58.
    • (1997) Structure , vol.5 , pp. 47-58
    • Eads, J.C.1    Ozturk, D.2    Wexler, T.B.3    Grubmeyer, C.4    Sacchettini, J.C.5
  • 62
    • 0032534756 scopus 로고    scopus 로고
    • Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: A potential TB drug target
    • Sharma V., Grubmeyer C., Sacchettini J.C. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure. 6:1998;1587-1599.
    • (1998) Structure , vol.6 , pp. 1587-1599
    • Sharma, V.1    Grubmeyer, C.2    Sacchettini, J.C.3
  • 63
    • 0037031886 scopus 로고    scopus 로고
    • Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenylyltransferase and ribosylnicotinamide kinase activities
    • Singh S.K., Kurnasov O.V., Chen B., Robinson H., Grishin N.V., Osterman A., Zhang H. Crystal structure of Haemophilus influenzae NadR protein. A bifunctional enzyme endowed with NMN adenylyltransferase and ribosylnicotinamide kinase activities. J Biol Chem. 277:2002;33291-33299.
    • (2002) J Biol Chem , vol.277 , pp. 33291-33299
    • Singh, S.K.1    Kurnasov, O.V.2    Chen, B.3    Robinson, H.4    Grishin, N.V.5    Osterman, A.6    Zhang, H.7
  • 64
    • 0034665459 scopus 로고    scopus 로고
    • + biosynthesis
    • This paper reports the first structure of a NMNAT, that is, M. jannaschii NMNAT in complex with ATP. The analysis of the ATP-binding site allowed the assignment of NMNAT to a wide family of nucleotidyltransferase α/β phosphodiesterases.
    • + biosynthesis. Struct Fold Des. 8:2000;993-1004. This paper reports the first structure of a NMNAT, that is, M. jannaschii NMNAT in complex with ATP. The analysis of the ATP-binding site allowed the assignment of NMNAT to a wide family of nucleotidyltransferase α/β phosphodiesterases.
    • (2000) Struct Fold Des , vol.8 , pp. 993-1004
    • D'Angelo, I.1    Raffaelli, N.2    Dabusti, V.3    Lorenzi, T.4    Magni, G.5    Rizzi, M.6
  • 65
    • 0037040970 scopus 로고    scopus 로고
    • Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis
    • This paper describes the structure of human NMNAT, a target for cancer chemotherapy, in its free form. Structural comparison with other NMNATs revealed the minimal structural framework for ATP binding in all NMNATs.
    • Garavaglia S., D'Angelo I., Emanuelli M., Carnevali F., Pierella F., Magni G., Rizzi M. Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis. J Biol Chem. 277:2002;8524-8530. This paper describes the structure of human NMNAT, a target for cancer chemotherapy, in its free form. Structural comparison with other NMNATs revealed the minimal structural framework for ATP binding in all NMNATs.
    • (2002) J Biol Chem , vol.277 , pp. 8524-8530
    • Garavaglia, S.1    D'Angelo, I.2    Emanuelli, M.3    Carnevali, F.4    Pierella, F.5    Magni, G.6    Rizzi, M.7
  • 67
    • 0036153602 scopus 로고    scopus 로고
    • Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD
    • The structural bases for the exquisite preference of eubacterial NMNAT for the acid form of the mononucleotide are revealed by the structural analysis described in this paper.
    • Zhang H., Zhou T., Kurnasov O., Cheek S., Grishin N.V., Osterman A. Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD. Structure. 10:2002;69-79. The structural bases for the exquisite preference of eubacterial NMNAT for the acid form of the mononucleotide are revealed by the structural analysis described in this paper.
    • (2002) Structure , vol.10 , pp. 69-79
    • Zhang, H.1    Zhou, T.2    Kurnasov, O.3    Cheek, S.4    Grishin, N.V.5    Osterman, A.6
  • 68
    • 0035831542 scopus 로고    scopus 로고
    • + synthesis: Structures of Methanobacterium thermoautotrophicum NMN adenylyltransferase complexes
    • The structure of M. thermoautotrophicum NMNAT in complex with NAD reported in this paper reveals the structural determinants for recognition of NMN by archaeal NMNATs.
    • + synthesis: structures of Methanobacterium thermoautotrophicum NMN adenylyltransferase complexes. J Biol Chem. 276:2001;7225-7232. The structure of M. thermoautotrophicum NMNAT in complex with NAD reported in this paper reveals the structural determinants for recognition of NMN by archaeal NMNATs.
    • (2001) J Biol Chem , vol.276 , pp. 7225-7232
    • Saridakis, V.1    Christendat, D.2    Kimber, M.S.3    Dharamsi, A.4    Edwards, A.M.5    Pai, E.F.6
  • 69
    • 0037066769 scopus 로고    scopus 로고
    • Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin
    • This paper contains an extensive structural study on human NMNAT, including the structure of a complex with a metabolite of a potent antineoplastic agent. Structural bases for the dual specificity shown by the human enzyme are described.
    • Zhou T., Kurnasov O., Tomchick D.R., Binns D.D., Grishin N.V., Marquez V.E., Osterman A.L., Zhang H. Structure of human nicotinamide/nicotinic acid mononucleotide adenylyltransferase. Basis for the dual substrate specificity and activation of the oncolytic agent tiazofurin. J Biol Chem. 277:2002;13148-13154. This paper contains an extensive structural study on human NMNAT, including the structure of a complex with a metabolite of a potent antineoplastic agent. Structural bases for the dual specificity shown by the human enzyme are described.
    • (2002) J Biol Chem , vol.277 , pp. 13148-13154
    • Zhou, T.1    Kurnasov, O.2    Tomchick, D.R.3    Binns, D.D.4    Grishin, N.V.5    Marquez, V.E.6    Osterman, A.L.7    Zhang, H.8
  • 70
    • 0037051999 scopus 로고    scopus 로고
    • Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN
    • Werner E., Ziegler M., Lerner F., Schweiger M., Heinemann U. Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN. FEBS Lett. 516:2002;239-244.
    • (2002) FEBS Lett , vol.516 , pp. 239-244
    • Werner, E.1    Ziegler, M.2    Lerner, F.3    Schweiger, M.4    Heinemann, U.5
  • 74
    • 0035997123 scopus 로고    scopus 로고
    • + synthetase from Bacillus subtilis at 1 Å resolution
    • This paper describes the structure at very high resolution of B. subtilis NADS in complex with the adenylate-NAD reaction intermediate. The structure was already reported in a previous paper [72], but the atomic resolution reached in this study allows the authors to propose a possible mechanism for the second step of the overall reaction.
    • + synthetase from Bacillus subtilis at 1 Å resolution. Acta Crystallogr D Biol Crystallogr. 58:2002;1138-1146. This paper describes the structure at very high resolution of B. subtilis NADS in complex with the adenylate-NAD reaction intermediate. The structure was already reported in a previous paper [72], but the atomic resolution reached in this study allows the authors to propose a possible mechanism for the second step of the overall reaction.
    • (2002) Acta Crystallogr D Biol Crystallogr , vol.58 , pp. 1138-1146
    • Symersky, J.1    Devedjiev, Y.2    Moore, K.3    Brouillette, C.4    DeLucas, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.