메뉴 건너뛰기




Volumn 5, Issue 3, 2002, Pages 428-438

Multiscale and Bayesian approaches to data analysis in genomics high-throughput screening

Author keywords

Bayesian; Gene expression analysis; Genomics HTS; Multiscale; Wavelet transformation

Indexed keywords

COMPLEMENTARY DNA;

EID: 0036589829     PISSN: 13676733     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (8)

References (37)
  • 1
    • 0000412069 scopus 로고    scopus 로고
    • GEST: A gene expression search tool based on a novel Bayesian similarity metric
    • Hunter L, Taylor RC, Leach SM, Simon R: GEST: A gene expression search tool based on a novel Bayesian similarity metric. Bioinformatics (2001) 17(Suppl 1):S115-S122. An informative discussion of many important issues that need to be addressed to improve the analysis of gene expression data. Although the results comparing the proposed similarity metric to conventional methods are inconclusive, the model development and validation steps are very well done.
    • (2001) Bioinformatics , vol.17 , Issue.SUPPL. 1
    • Hunter, L.1    Taylor, R.C.2    Leach, S.M.3    Simon, R.4
  • 2
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes
    • Baldi P, Long AD: A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics (2001) 17:509-519. Detailed description of the development of a Bayesian model that includes much useful information about Bayesian statistics and its application to bioinformatics.
    • (2001) Bioinformatics , vol.17 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 3
    • 0012308752 scopus 로고    scopus 로고
    • Berkeley, CA/University of California at Berkeley, CA, USA
    • Eisen's Lab: Software. Lawrence Berkeley National Laboratory, Berkeley, CA/University of California at Berkeley, CA, USA. http://rana.lbl.gov/EisenSoftware.htm
    • Eisen's Lab: Software
  • 4
    • 0012263932 scopus 로고    scopus 로고
    • Stanford University, CA, USA
    • Clustering software. Stanford University, CA, USA. http://genome-www.stanford.edu/%7Esherlock/cluster.html
    • Clustering Software
  • 5
    • 0012271424 scopus 로고    scopus 로고
    • Bethesda, MD, USA
    • Genomics and Bioinformatics Group. National Cancer Institute/National Institutes of Health, Bethesda, MD, USA. http://discover.nci.nih.gov/
  • 7
    • 0036184613 scopus 로고    scopus 로고
    • A Bayesian approach to discriminate between alternative DNA sequence segmentations
    • Husmeier D, Wright F: A Bayesian approach to discriminate between alternative DNA sequence segmentations. Bioinformatics (2002) 18:226-234.
    • (2002) Bioinformatics , vol.18 , pp. 226-234
    • Husmeier, D.1    Wright, F.2
  • 8
    • 0036493242 scopus 로고    scopus 로고
    • BALSA: Bayesian algorithm for local sequence alignment
    • Webb BJM, Liu JS, Lawrence CE: BALSA: Bayesian algorithm for local sequence alignment. Nucleic Acids Res (2002) 30:1268-1277.
    • (2002) Nucleic Acids Res , vol.30 , pp. 1268-1277
    • Webb, B.J.M.1    Liu, J.S.2    Lawrence, C.E.3
  • 10
    • 0035020215 scopus 로고    scopus 로고
    • MAC5: Bayesian inference of phylogenetic trees from DNA sequences incorporating gaps
    • McGuire G, Denham MC, Balding DJ: MAC5: Bayesian inference of phylogenetic trees from DNA sequences incorporating gaps. Bioinformatics (2001) 17:479-480.
    • (2001) Bioinformatics , vol.17 , pp. 479-480
    • McGuire, G.1    Denham, M.C.2    Balding, D.J.3
  • 11
    • 0034791551 scopus 로고    scopus 로고
    • Evolutionary HMMs: A Bayesian approach to multiple alignment
    • Holmes I, Bruno WJ: Evolutionary HMMs: A Bayesian approach to multiple alignment. Bioinformatics (2001) 17:803-820.
    • (2001) Bioinformatics , vol.17 , pp. 803-820
    • Holmes, I.1    Bruno, W.J.2
  • 12
    • 0035802384 scopus 로고    scopus 로고
    • Delineating relative homogeneous G+C domains in DNA sequences
    • Li W: Delineating relative homogeneous G+C domains in DNA sequences. Gene (2001) 276:57-72.
    • (2001) Gene , vol.276 , pp. 57-72
    • Li, W.1
  • 13
    • 0034967295 scopus 로고    scopus 로고
    • Distinguishing migration from isolation: A Markov chain Monte Carlo approach
    • Nielsen R, Wakeley J: Distinguishing migration from isolation: A Markov chain Monte Carlo approach. Genetics (2001) 158:885-896.
    • (2001) Genetics , vol.158 , pp. 885-896
    • Nielsen, R.1    Wakeley, J.2
  • 14
    • 0035141755 scopus 로고    scopus 로고
    • A Bayesian method for finding regulatory segments in DNA
    • Crowley EM: A Bayesian method for finding regulatory segments in DNA. Biopolymers (2001) 58:165-174.
    • (2001) Biopolymers , vol.58 , pp. 165-174
    • Crowley, E.M.1
  • 15
    • 0034619234 scopus 로고    scopus 로고
    • Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences
    • Dodin G, Vandergheynst P, Levoir P, Cordier C, Marcourt L: Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. J Theor Biol (2000) 206:323-326.
    • (2000) J Theor Biol , vol.206 , pp. 323-326
    • Dodin, G.1    Vandergheynst, P.2    Levoir, P.3    Cordier, C.4    Marcourt, L.5
  • 17
    • 0012325854 scopus 로고    scopus 로고
    • A wavelet-based multifractal formalism application to the study of DNA sequences
    • Bacry E, Arneodo A, Graves PV, Muzy JF: A wavelet-based multifractal formalism application to the study of DNA sequences. J Tech Phys (1996) 37:281-284.
    • (1996) J Tech Phys , vol.37 , pp. 281-284
    • Bacry, E.1    Arneodo, A.2    Graves, P.V.3    Muzy, J.F.4
  • 20
    • 0033199777 scopus 로고    scopus 로고
    • Bayesian statistics in genetics: A guide for the uninitiated
    • Shoemaker JS, Painter IS, Weir BS: Bayesian statistics in genetics: A guide for the uninitiated. Trends Genet (1999) 15:354-358. A good overview of the application of Bayesian statistics in genetics.
    • (1999) Trends Genet , vol.15 , pp. 354-358
    • Shoemaker, J.S.1    Painter, I.S.2    Weir, B.S.3
  • 21
    • 0033059370 scopus 로고    scopus 로고
    • Bayesian inference on biopolymer models
    • Liu JS, Lawrence CE: Bayesian inference on biopolymer models. Bioinformatics (1999) 15:38-52. Although not directly related to gene expression analysis, this article provides an excellent description of Bayesian inference in bioinformatics.
    • (1999) Bioinformatics , vol.15 , pp. 38-52
    • Liu, J.S.1    Lawrence, C.E.2
  • 23
    • 0033637404 scopus 로고    scopus 로고
    • Finding pathogenicity islands and gene transfer events in genome data
    • Lio P, Vannucci M: Finding pathogenicity islands and gene transfer events in genome data. Bioinformatics (2000) 16:932-940.
    • (2000) Bioinformatics , vol.16 , pp. 932-940
    • Lio, P.1    Vannucci, M.2
  • 24
    • 0033977175 scopus 로고    scopus 로고
    • A new method for characterizing replacement rate variation in molecular sequences. Application of the Fourier and wavelet models to Drosophila and mammalian proteins
    • Morozov P, Sitnikova T, Churchill G, Ayala FJ, Rzhetsky A: A new method for characterizing replacement rate variation in molecular sequences. Application of the Fourier and wavelet models to Drosophila and mammalian proteins. Genetics (2000) 154:381-395.
    • (2000) Genetics , vol.154 , pp. 381-395
    • Morozov, P.1    Sitnikova, T.2    Churchill, G.3    Ayala, F.J.4    Rzhetsky, A.5
  • 25
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat SG: A theory for multiresolution signal decomposition: The wavelet representation. IEEE T Pattern Anal (1989) 11:674-693.
    • (1989) IEEE T Pattern Anal , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 26
    • 0004258275 scopus 로고    scopus 로고
    • Elsevier, Amsterdam, the Netherlands
    • Walczak B (Ed): Wavelets in Chemistry. Elsevier, Amsterdam, the Netherlands (2000).
    • (2000) Wavelets in Chemistry
    • Walczak, B.1
  • 29
    • 0035827588 scopus 로고    scopus 로고
    • Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12
    • Long AD, Mangalam HJ, Chan BYP, Tolled L, Hatfield GW, Baldi P: Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. J Biol Chem (2001) 276:19937-19944. This study is closely related to reference [2••] but with less emphasis on statistical details.
    • (2001) J Biol Chem , vol.276 , pp. 19937-19944
    • Long, A.D.1    Mangalam, H.J.2    Chan, B.Y.P.3    Tolled, L.4    Hatfield, G.W.5    Baldi, P.6
  • 30
    • 0035681150 scopus 로고    scopus 로고
    • Bayesian estimation of fold-changes in the analysis of gene expression: The PFOLD algorithm
    • Theilhaber J, Bushnell S, Jackson A, Fuchs R: Bayesian estimation of fold-changes in the analysis of gene expression: The PFOLD algorithm. J Comput Biol (2001) 8:585-614. An excellent paper that presents a systematic and detailed description of a new algorithm for estimating fold-changes. It also provides a very interesting overview of various experimental details that must be considered and how they can be incorporated. The development of a detailed noise model is presented, which is by itself a significant contribution.
    • (2001) J Comput Biol , vol.8 , pp. 585-614
    • Theilhaber, J.1    Bushnell, S.2    Jackson, A.3    Fuchs, R.4
  • 31
    • 0012267444 scopus 로고    scopus 로고
    • National Center for Genome Resources, Santa Fe, NM, USA
    • Cyber-T. National Center for Genome Resources, Santa Fe, NM, USA.http://genomics.biochem.uci.edu/genex/cybert/
  • 32
  • 33
    • 0033707946 scopus 로고    scopus 로고
    • Pe'er D: Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J Comput Biol (2000) 7:601-620.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 34
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modelling of gene expression data from microarray experiments
    • Ghosh D, Chinnaiyan AM: Mixture modelling of gene expression data from microarray experiments. Bioinformatics (2002) 18:275-286. An interesting paper in which mixture modeling, with a decision step based on Bayes factors, is used to determine the number of true clusters in the analysis of gene expression data.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 36
    • 0034334515 scopus 로고    scopus 로고
    • Dynamic architecture of the yeast cell cycle uncovered by wavelet decomposition of expression microarray data
    • Klevecz RR: Dynamic architecture of the yeast cell cycle uncovered by wavelet decomposition of expression microarray data. Funct Integr Genomics (2000) 1:186-192. A good example of application of wavelet transformation to time-series gene expression data.
    • (2000) Funct Integr Genomics , vol.1 , pp. 186-192
    • Klevecz, R.R.1
  • 37
    • 0033809582 scopus 로고    scopus 로고
    • Tuning in the transcriptome: Basins of attraction in the yeast cell cycle
    • Klevecz RR, Dowse HB: Tuning in the transcriptome: Basins of attraction in the yeast cell cycle. Cell Prolif (2000) 33:209-218.
    • (2000) Cell Prolif , vol.33 , pp. 209-218
    • Klevecz, R.R.1    Dowse, H.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.