메뉴 건너뛰기




Volumn 451, Issue 1-2, 2000, Pages 241-255

Interrelationships between DNA repair and DNA replication

Author keywords

[No Author keywords available]

Indexed keywords

DNA POLYMERASE; ISOENZYME;

EID: 0034733689     PISSN: 00275107     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0027-5107(00)00053-1     Document Type: Review
Times cited : (14)

References (105)
  • 1
    • 0030825134 scopus 로고    scopus 로고
    • The roles of the eukaryotic DNA polymerases in DNA repair synthesis
    • Budd M.E., Campbell J.L. The roles of the eukaryotic DNA polymerases in DNA repair synthesis. Mutat. Res. 384:1997;157-167.
    • (1997) Mutat. Res. , vol.384 , pp. 157-167
    • Budd, M.E.1    Campbell, J.L.2
  • 3
    • 0031467141 scopus 로고    scopus 로고
    • Initiation of DNA replication in eukaryotic cells
    • Dutta A., Bell S.P. Initiation of DNA replication in eukaryotic cells. Ann. Rev. Cell. Biol. 13:1997;293-332.
    • (1997) Ann. Rev. Cell. Biol. , vol.13 , pp. 293-332
    • Dutta, A.1    Bell, S.P.2
  • 4
    • 0031686246 scopus 로고    scopus 로고
    • Eukaroytic DNA polymerases in DNA replication and DNA repair
    • Burgers P.M.J. Eukaroytic DNA polymerases in DNA replication and DNA repair. Chromosoma (Berl.). 107:1998;218-227.
    • (1998) Chromosoma (Berl.) , vol.107 , pp. 218-227
    • Burgers, P.M.J.1
  • 7
    • 0029670573 scopus 로고    scopus 로고
    • 3′ to 5′ exonucleases of DNA polymerases ε and δ correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae
    • Shcherbakova P.V., Pavlov Y.I. 3′ to 5′ exonucleases of DNA polymerases ε and δ correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics. 142:1996;717-726.
    • (1996) Genetics , vol.142 , pp. 717-726
    • Shcherbakova, P.V.1    Pavlov, Y.I.2
  • 8
    • 0030859463 scopus 로고    scopus 로고
    • A DNA helicase activity is associated with an MCM4, -6, and-7 complex
    • Ishimi Y. A DNA helicase activity is associated with an MCM4, -6, and-7 complex. J. Biol. Chem. 272:1997;24508-24513.
    • (1997) J. Biol. Chem. , vol.272 , pp. 24508-24513
    • Ishimi, Y.1
  • 9
    • 0032478695 scopus 로고    scopus 로고
    • Biochemical function of mouse minichromosome maintenance 2 protein
    • Ishimi Y., Komamura Y., You Z., Kimura H. Biochemical function of mouse minichromosome maintenance 2 protein. J. Biol. Chem. 273:1998;8369-8375.
    • (1998) J. Biol. Chem. , vol.273 , pp. 8369-8375
    • Ishimi, Y.1    Komamura, Y.2    You, Z.3    Kimura, H.4
  • 11
    • 0025805542 scopus 로고
    • DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae
    • Araki H., Hamatake R.K., Johnston L.H., Sugino A. DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 88:1991;4601-4605.
    • (1991) Proc. Natl. Acad. Sci. U. S. A. , vol.88 , pp. 4601-4605
    • Araki, H.1    Hamatake, R.K.2    Johnston, L.H.3    Sugino, A.4
  • 12
    • 0025825976 scopus 로고
    • Cloning DBP3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae
    • Araki H., Hamatake R.K., Morrison A., Johnston L.H., Sugino A. Cloning DBP3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucl. Acids Res. 19:1991;4867-4872.
    • (1991) Nucl. Acids Res. , vol.19 , pp. 4867-4872
    • Araki, H.1    Hamatake, R.K.2    Morrison, A.3    Johnston, L.H.4    Sugino, A.5
  • 13
    • 0029592020 scopus 로고
    • Dpb11, which interacts with DNA polymerase II(ε) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint
    • Araki H., Leem S.-H., Amornrat P., Sugino A. Dpb11, which interacts with DNA polymerase II(ε) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc. Natl. Acad. Sci. U. S. A. 92:1995;11791-11795.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 11791-11795
    • Araki, H.1    Leem, S.-H.2    Amornrat, P.3    Sugino, A.4
  • 14
    • 0031658237 scopus 로고    scopus 로고
    • Sld2, which interacts with Dpb11 in Saccharomyces cerevisae, is required for chromosomal DNA replication
    • Kamimura Y., Masumoto H., Sugino A., Araki H. Sld2, which interacts with Dpb11 in Saccharomyces cerevisae, is required for chromosomal DNA replication. Mol. Cell. Biol. 18:1998;6102-6109.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 6102-6109
    • Kamimura, Y.1    Masumoto, H.2    Sugino, A.3    Araki, H.4
  • 15
    • 0032584658 scopus 로고    scopus 로고
    • Characterization of the two small subunits of Saccharomyces cerevisae DNA polymerase delta
    • Gerik K.J., Li X., Pautz A., Burgers P.M. Characterization of the two small subunits of Saccharomyces cerevisae DNA polymerase delta. J. Biol. Chem. 273:1998;19747-19755.
    • (1998) J. Biol. Chem. , vol.273 , pp. 19747-19755
    • Gerik, K.J.1    Li, X.2    Pautz, A.3    Burgers, P.M.4
  • 16
    • 0032584599 scopus 로고    scopus 로고
    • Structure and processivity of two forms of Saccharomyces cerevisae DNA polymerase delta
    • Burgers P.M. Structure and processivity of two forms of Saccharomyces cerevisae DNA polymerase delta. J. Biol. Chem. 273:1998;19756-19762.
    • (1998) J. Biol. Chem. , vol.273 , pp. 19756-19762
    • Burgers, P.M.1
  • 17
    • 0029952294 scopus 로고    scopus 로고
    • Thymine-thymine dimer bypass by yeast DNA polymerase ζ
    • Nelson J.R., Lawrence C.W., Hinkle D.C. Thymine-thymine dimer bypass by yeast DNA polymerase ζ Nature. 272:1996;1646-1648.
    • (1996) Nature , vol.272 , pp. 1646-1648
    • Nelson, J.R.1    Lawrence, C.W.2    Hinkle, D.C.3
  • 19
    • 0033548231 scopus 로고    scopus 로고
    • Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta
    • Johnson R.E., Prakash S., Prakash L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Pol eta. Science. 283:1999;1000-1004.
    • (1999) Science , vol.283 , pp. 1000-1004
    • Johnson, R.E.1    Prakash, S.2    Prakash, L.3
  • 20
    • 0030735538 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism
    • McDonald J.P., Levine A.S., Woodgate R. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics. 147:1997;1557-1568.
    • (1997) Genetics , vol.147 , pp. 1557-1568
    • McDonald, J.P.1    Levine, A.S.2    Woodgate, R.3
  • 21
    • 0029789574 scopus 로고    scopus 로고
    • Molecular-cloning of Drosophila mus308. A gene involve in DNA cross-link repair ith homology to prokaryotic DNA-polymerase-I genes
    • Harris P.V., Mazina O.M., Leonhardt E.A., Case R.B., Boyd J.B. Molecular-cloning of Drosophila mus308. A gene involve in DNA cross-link repair ith homology to prokaryotic DNA-polymerase-I genes. Mol. Cell. Biol. 16:1996;5764-5771.
    • (1996) Mol. Cell. Biol. , vol.16 , pp. 5764-5771
    • Harris, P.V.1    Mazina, O.M.2    Leonhardt, E.A.3    Case, R.B.4    Boyd, J.B.5
  • 22
    • 0031416756 scopus 로고    scopus 로고
    • Which DNA polymerases are used for DNA repair in eukaryotes?
    • in press
    • Shivji M.K.K., Wood R.W. Which DNA polymerases are used for DNA repair in eukaryotes? Carcinogenesis. 1997;. in press.
    • (1997) Carcinogenesis
    • Shivji, M.K.K.1    Wood, R.W.2
  • 23
    • 0028940972 scopus 로고
    • DNA polymerases required for repair of UV-induced damage in yeast
    • Budd M.E., Campbell J.L. DNA polymerases required for repair of UV-induced damage in yeast. Mol. Cell. Biol. 15:1995;2173-2179.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 2173-2179
    • Budd, M.E.1    Campbell, J.L.2
  • 24
    • 0024616339 scopus 로고
    • DNA polymerase I is required for DNA replication but not for repair in Saccharomyces cerevisiae
    • Budd M.E., Wittrup K.D., Bailey J.E., Campbell J.L. DNA polymerase I is required for DNA replication but not for repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:1989;365-376.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 365-376
    • Budd, M.E.1    Wittrup, K.D.2    Bailey, J.E.3    Campbell, J.L.4
  • 25
    • 0033616683 scopus 로고    scopus 로고
    • Replication fork assembly at recombination intermediates is required for bacterial growth
    • Liu J., Xu L., Sandler S.J., Marians K.J. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc. Natl. Acad. Sci. U. S. A. 96:1999;3552-3555.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 3552-3555
    • Liu, J.1    Xu, L.2    Sandler, S.J.3    Marians, K.J.4
  • 26
    • 0029863634 scopus 로고    scopus 로고
    • The DNA replication priming protein PriA, is required for homologous recombination and double-strand break repair
    • Kogoma T., Cadwell G.W., Barnard K.G., Asai T. The DNA replication priming protein PriA, is required for homologous recombination and double-strand break repair. J. Bacteriol. 178:1996;1258-1264.
    • (1996) J. Bacteriol. , vol.178 , pp. 1258-1264
    • Kogoma, T.1    Cadwell, G.W.2    Barnard, K.G.3    Asai, T.4
  • 27
    • 0033525095 scopus 로고    scopus 로고
    • Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases
    • Holmes A.M., Haber J.E. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell. 96:1999;415-424.
    • (1999) Cell , vol.96 , pp. 415-424
    • Holmes, A.M.1    Haber, J.E.2
  • 28
    • 0029947714 scopus 로고    scopus 로고
    • Double-strand break repair in the absence of RAD51 in yeast - A possible role for break-induced DNA replication
    • Malkova A., Ivanov E.L., Haber J.E. Double-strand break repair in the absence of RAD51 in yeast - a possible role for break-induced DNA replication. Proc. Nat. Acad. Sci. U. S. A. 93:1996;7131-7136.
    • (1996) Proc. Nat. Acad. Sci. U. S. A. , vol.93 , pp. 7131-7136
    • Malkova, A.1    Ivanov, E.L.2    Haber, J.E.3
  • 30
    • 0029949916 scopus 로고    scopus 로고
    • S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes
    • Tashiro S., Kotomura N., Shinohara A., Tanaka K., Ueda K., Kamada N. S phase specific formation of the human Rad51 protein nuclear foci in lymphocytes. Oncogene. 12:1996;2165-2170.
    • (1996) Oncogene , vol.12 , pp. 2165-2170
    • Tashiro, S.1    Kotomura, N.2    Shinohara, A.3    Tanaka, K.4    Ueda, K.5    Kamada, N.6
  • 32
  • 33
    • 0029085781 scopus 로고
    • A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage
    • Paulovich A.G., Hartwell L.H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell. 82:1995;841-847.
    • (1995) Cell , vol.82 , pp. 841-847
    • Paulovich, A.G.1    Hartwell, L.H.2
  • 34
    • 0032167423 scopus 로고    scopus 로고
    • Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- And Dbf4-dependent kinases
    • Tanaka T., Nasmyth K. Association of RPA with chromosomal replication origins requires an Mcm protein, and is regulated by Rad53, and cyclin- and Dbf4-dependent kinases. EMBO J. 17:1998;5182-5191.
    • (1998) EMBO J. , vol.17 , pp. 5182-5191
    • Tanaka, T.1    Nasmyth, K.2
  • 36
    • 0033529791 scopus 로고    scopus 로고
    • Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication
    • Aparicio O.M., Stout A.M., Bell S.P. Differential assembly of Cdc45p and DNA polymerases at early and late origins of DNA replication. Proc. Natl. Acad. Sci. U. S. A. 96:1999;9130-9135.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 9130-9135
    • Aparicio, O.M.1    Stout, A.M.2    Bell, S.P.3
  • 37
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- And Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C., Diffley J.F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature. 395:1998;615-618.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 38
    • 0030612690 scopus 로고    scopus 로고
    • Involvement of the REV3 gene in the methylated base-excision repair system - cooperation of 2 DNA polymerases, delta and Rev3p, in the repair of MMS-induced lesions in the DNA of Saccharomcyes cerevisiae
    • Halas A., Baranowska H., Policinska Z., Jachmyczyk W.J. Involvement of the REV3 gene in the methylated base-excision repair system - cooperation of 2 DNA polymerases, delta and Rev3p, in the repair of MMS-induced lesions in the DNA of Saccharomcyes cerevisiae. Curr. Genet. 31:1997;292-301.
    • (1997) Curr. Genet. , vol.31 , pp. 292-301
    • Halas, A.1    Baranowska, H.2    Policinska, Z.3    Jachmyczyk, W.J.4
  • 39
    • 0033529497 scopus 로고    scopus 로고
    • Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain
    • Dua R., Levy D., Campbell J.L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274:1999;22283-22288.
    • (1999) J. Biol. Chem. , vol.274 , pp. 22283-22288
    • Dua, R.1    Levy, D.2    Campbell, J.L.3
  • 40
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T., Flick K., Keranen S., Syvaoja J.E., Wittenburg C. DNA polymerase epsilon catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell. 3:1999;679-685.
    • (1999) Mol. Cell , vol.3 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keranen, S.3    Syvaoja, J.E.4    Wittenburg, C.5
  • 41
    • 0027454947 scopus 로고
    • DNA polymerases δ and ε are required for chromosomal replication in Saccharomyces cerevisiae
    • Budd M.E., Campbell J.L. DNA polymerases δ and ε are required for chromosomal replication in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1993;496-505.
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 496-505
    • Budd, M.E.1    Campbell, J.L.2
  • 42
    • 0032491540 scopus 로고    scopus 로고
    • Role of the putative zinc finger domain of Saccharromyces cerevisae DNA polymerase e in DNA replication and the S/M checkpoint pathway
    • Dua R., Levy D.L., Campbell J.L. Role of the putative zinc finger domain of Saccharromyces cerevisae DNA polymerase e in DNA replication and the S/M checkpoint pathway. J. Biol. Chem. 273:1998;30046-30055.
    • (1998) J. Biol. Chem. , vol.273 , pp. 30046-30055
    • Dua, R.1    Levy, D.L.2    Campbell, J.L.3
  • 43
    • 0028979332 scopus 로고
    • DNA polymerase ε links the DNA replication machinery to the S phase checkpoint
    • Navas T.A., Zhou Z., Elledge S.J. DNA polymerase ε links the DNA replication machinery to the S phase checkpoint. Cell. 80:1995;29-39.
    • (1995) Cell , vol.80 , pp. 29-39
    • Navas, T.A.1    Zhou, Z.2    Elledge, S.J.3
  • 44
    • 0029859168 scopus 로고    scopus 로고
    • RAD9 and DNA polymerase ε form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae
    • Navas T.A., Sanchez Y., Elledge S.J. RAD9 and DNA polymerase ε form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae. Genes Dev. 10:1996;2632-2643.
    • (1996) Genes Dev. , vol.10 , pp. 2632-2643
    • Navas, T.A.1    Sanchez, Y.2    Elledge, S.J.3
  • 45
    • 0025936553 scopus 로고
    • Possible involvement of the yeast POLIII DNA polymrase in induced gene conversion
    • Fabre F., Boulet A., Faye G. Possible involvement of the yeast POLIII DNA polymrase in induced gene conversion. Mol. Gen. Genet. 229:1991;353-356.
    • (1991) Mol. Gen. Genet. , vol.229 , pp. 353-356
    • Fabre, F.1    Boulet, A.2    Faye, G.3
  • 46
    • 0029837030 scopus 로고    scopus 로고
    • In vivo anlaysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair
    • Amin N.S., Holm C. In vivo anlaysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics. 144:1996;479-493.
    • (1996) Genetics , vol.144 , pp. 479-493
    • Amin, N.S.1    Holm, C.2
  • 47
    • 0029821929 scopus 로고    scopus 로고
    • Requirement of proliferating cell nuclear antigen in rad6-dependent postreplicational DNA-repair
    • Torresramos C.A., Yoder B.L., Burgers P.M.J., Prakash S., Prakash L. Requirement of proliferating cell nuclear antigen in rad6-dependent postreplicational DNA-repair. PNAS. 93:1996;9676-9681.
    • (1996) PNAS , vol.93 , pp. 9676-9681
    • Torresramos, C.A.1    Yoder, B.L.2    Burgers, P.M.J.3    Prakash, S.4    Prakash, L.5
  • 48
    • 0033578369 scopus 로고    scopus 로고
    • The C-terminal region of Schizosaccaromyces pombe proliferating cell nuclear antigen is essential for DNA polymerase activity
    • Kelman Z., Zuo S., Arroya M.P., Wang T.S.-F., Hurwitz J. The C-terminal region of Schizosaccaromyces pombe proliferating cell nuclear antigen is essential for DNA polymerase activity. Proc. Natl. Acad. Sci. U. S. A. 96:1999;9515-9520.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 9515-9520
    • Kelman, Z.1    Zuo, S.2    Arroya, M.P.3    Wang, T.S.-F.4    Hurwitz, J.5
  • 49
    • 0030857979 scopus 로고    scopus 로고
    • Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon
    • Eissenberg J.C., Ayyargari R., Gomes X.V., Burgers P.M.J. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol. Cell Biol. 17:1997;6367-7378.
    • (1997) Mol. Cell Biol. , vol.17 , pp. 6367-7378
    • Eissenberg, J.C.1    Ayyargari, R.2    Gomes, X.V.3    Burgers, P.M.J.4
  • 50
    • 0030913166 scopus 로고    scopus 로고
    • Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: A potential mechanism to coordinate DNA replication and repair
    • Warbrick E., Lane D.P., Glover D.M., Cox L.S. Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to coordinate DNA replication and repair. Oncogene. 14:1997;2313-2321.
    • (1997) Oncogene , vol.14 , pp. 2313-2321
    • Warbrick, E.1    Lane, D.P.2    Glover, D.M.3    Cox, L.S.4
  • 51
    • 0029257341 scopus 로고
    • A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen
    • Warbrick E., Lane D.P., Glover D.M., Cox L.S. A small peptide inhibitor of DNA replication defines the site of interaction between the cyclin-dependent kinase inhibitor p21WAF1 and proliferating cell nuclear antigen. Curr. Biol. 5:1995;275-282.
    • (1995) Curr. Biol. , vol.5 , pp. 275-282
    • Warbrick, E.1    Lane, D.P.2    Glover, D.M.3    Cox, L.S.4
  • 53
    • 0028352434 scopus 로고
    • The p21 inhibitor of cyclin-dependent kinases controls DNA-replication by interaction with PCNA
    • Waga S., Hannon G.J., Beach D., Stillman B. The p21 inhibitor of cyclin-dependent kinases controls DNA-replication by interaction with PCNA. Nature. 369:1994;574-578.
    • (1994) Nature , vol.369 , pp. 574-578
    • Waga, S.1    Hannon, G.J.2    Beach, D.3    Stillman, B.4
  • 54
    • 0030770835 scopus 로고    scopus 로고
    • Human DNA (cytosine-5) methyltransferase PCNA complex as a target for p21(WAF1)
    • Chuang L.S.H., Ian H.I., Koh T.W., Ng H.H., Xu G.L., Li B.F.L. Human DNA (cytosine-5) methyltransferase PCNA complex as a target for p21(WAF1). Science. 277:1997;1996-2000.
    • (1997) Science , vol.277 , pp. 1996-2000
    • Chuang, L.S.H.1    Ian, H.I.2    Koh, T.W.3    Ng, H.H.4    Xu, G.L.5    Li, B.F.L.6
  • 56
    • 0031012651 scopus 로고    scopus 로고
    • Overproduction and affinity purification of Saccharomyces cerevisiase replication factor C
    • Gerik K.J., Gary S.L., Burgers P.M.J. Overproduction and affinity purification of Saccharomyces cerevisiase replication factor C. J. Biol. Chem. 272:1997;1256-1262.
    • (1997) J. Biol. Chem. , vol.272 , pp. 1256-1262
    • Gerik, K.J.1    Gary, S.L.2    Burgers, P.M.J.3
  • 57
    • 0028115841 scopus 로고
    • Cdc44 - A putative nucleotide-binding protein required for cell-cycle progression that has homology to subunits of replication factor-C
    • Howell E.A., Mcalear M.A., Rose D., Holm C. Cdc44 - a putative nucleotide-binding protein required for cell-cycle progression that has homology to subunits of replication factor-C. Mol. Cell. Biol. 14:1994;255-267.
    • (1994) Mol. Cell. Biol. , vol.14 , pp. 255-267
    • Howell, E.A.1    McAlear, M.A.2    Rose, D.3    Holm, C.4
  • 58
    • 0031858055 scopus 로고    scopus 로고
    • The RFC2 gene, encoding the 3rd-largest subunit of the replication factor C complex, is required for an S phase checkpoint in Saccharomyces cerevisiae
    • Noskov V.N., Araki H., Sugino A. The RFC2 gene, encoding the 3rd-largest subunit of the replication factor C complex, is required for an S phase checkpoint in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:1998;4913-4922.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4913-4922
    • Noskov, V.N.1    Araki, H.2    Sugino, A.3
  • 59
    • 0030793718 scopus 로고    scopus 로고
    • Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway
    • Sugimoto K., Ando S., Shimomura T., Matsumoto K. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol. Cell. Biol. 17:1997;5905-5914.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 5905-5914
    • Sugimoto, K.1    Ando, S.2    Shimomura, T.3    Matsumoto, K.4
  • 60
    • 0031839902 scopus 로고    scopus 로고
    • Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways
    • Shimomura T., Ando S., Matsumoto K., Sugimoto K. Functional and physical interaction between Rad24 and Rfc5 in the yeast checkpoint pathways. Mol. Cell. Biol. 18:1998;5485-5491.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 5485-5491
    • Shimomura, T.1    Ando, S.2    Matsumoto, K.3    Sugimoto, K.4
  • 61
    • 0028838087 scopus 로고
    • A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52
    • Firmenich A.A., Elias-Arnanz M., Berg P. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52. Mol. Cell. Biol. 15:1995;1620-1631.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 1620-1631
    • Firmenich, A.A.1    Elias-Arnanz, M.2    Berg, P.3
  • 62
    • 0031960691 scopus 로고    scopus 로고
    • Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism
    • Umezu K., Sugawara N., Chen C., Haber J.E., Kolodner R.D. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics. 148:1998;989-1005.
    • (1998) Genetics , vol.148 , pp. 989-1005
    • Umezu, K.1    Sugawara, N.2    Chen, C.3    Haber, J.E.4    Kolodner, R.D.5
  • 63
    • 0031835781 scopus 로고    scopus 로고
    • Studies of the interaction between rad52 protein and the yeast single-stranded DNA binding protein RPA
    • Hays S.L., Firmenich A.A., Massey P., Banerjee R., Berg P. Studies of the interaction between rad52 protein and the yeast single-stranded DNA binding protein RPA. Mol. Cell. Biol. 18:1998;4400-4406.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4400-4406
    • Hays, S.L.1    Firmenich, A.A.2    Massey, P.3    Banerjee, R.4    Berg, P.5
  • 64
    • 0032109778 scopus 로고    scopus 로고
    • Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
    • Chen C., Umezu K., Kolodner R.D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell. 2:1998;9-22.
    • (1998) Mol. Cell , vol.2 , pp. 9-22
    • Chen, C.1    Umezu, K.2    Kolodner, R.D.3
  • 65
    • 0027978039 scopus 로고
    • Catalysis of ATP-depedent homologous DNA pairing and strand excahnge by yeast RAD51 protein
    • Sung P. Catalysis of ATP-depedent homologous DNA pairing and strand excahnge by yeast RAD51 protein. Science. 265:1994;1241-1243.
    • (1994) Science , vol.265 , pp. 1241-1243
    • Sung, P.1
  • 67
    • 0029129283 scopus 로고
    • An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair
    • Li L., Lu X., Peterson C.A., Legerski R.J. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol. Cell. Biol. 15:1995;5396-5402.
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5396-5402
    • Li, L.1    Lu, X.2    Peterson, C.A.3    Legerski, R.J.4
  • 68
    • 0028929611 scopus 로고
    • RPA involvement in the damage-recognition and incision steps of nucleotide excision-repair
    • He Z.G., Henricksen L.A., Wold M.S., Ingles C.J. RPA involvement in the damage-recognition and incision steps of nucleotide excision-repair. Nature. 374:1995;566-569.
    • (1995) Nature , vol.374 , pp. 566-569
    • He, Z.G.1    Henricksen, L.A.2    Wold, M.S.3    Ingles, C.J.4
  • 69
    • 0028059099 scopus 로고
    • Deletion of a DNA polymerase β gene segment in T-cells using cell-type-specific gene targeting
    • Gu H., Marth J.D., Orban P.C., Mossmann H., Rajewsky K. Deletion of a DNA polymerase β gene segment in T-cells using cell-type-specific gene targeting. Science. 265:1994;103-106.
    • (1994) Science , vol.265 , pp. 103-106
    • Gu, H.1    Marth, J.D.2    Orban, P.C.3    Mossmann, H.4    Rajewsky, K.5
  • 72
    • 0028845729 scopus 로고
    • Purification and enzymatic and functional characterization of DNA polymerase β-like enzyme, pol4, expressed during yeast meiosis
    • Budd M., Campbell J.L. Purification and enzymatic and functional characterization of DNA polymerase β-like enzyme, pol4, expressed during yeast meiosis. Methods Enzymol. 262:1995;108-130.
    • (1995) Methods Enzymol. , vol.262 , pp. 108-130
    • Budd, M.1    Campbell, J.L.2
  • 75
    • 0027937623 scopus 로고
    • The yeast Saccharomyces cerevisiae DNA polymerase IV - possible involvement in double-strand break DNA repair
    • Leem S.H., Ropp P.A., Sugino A. The yeast Saccharomyces cerevisiae DNA polymerase IV - possible involvement in double-strand break DNA repair. Nucl. Acid Res. 22:1994;3011-3017.
    • (1994) Nucl. Acid Res. , vol.22 , pp. 3011-3017
    • Leem, S.H.1    Ropp, P.A.2    Sugino, A.3
  • 76
    • 0030925436 scopus 로고    scopus 로고
    • Replication fork bypass of a pryrimidine dimer blocking leading strand DNA synthesis
    • Cordeiro-Stone M., Zaritskaya L.S., Price L.K., Kaufmann W.K. Replication fork bypass of a pryrimidine dimer blocking leading strand DNA synthesis. J. Biol. Chem. 272:1997;13945-13954.
    • (1997) J. Biol. Chem. , vol.272 , pp. 13945-13954
    • Cordeiro-Stone, M.1    Zaritskaya, L.S.2    Price, L.K.3    Kaufmann, W.K.4
  • 77
    • 0031921639 scopus 로고    scopus 로고
    • Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability
    • Roush A.A., Suarex M., Friedberg E.C., Radman M., Siede W. Deletion of the Saccharomyces cerevisiae gene RAD30 encoding an Escherichia coli DinB homolog confers UV radiation sensitivity and altered mutability. Mol. Gen. Genet. 257:1998;686-692.
    • (1998) Mol. Gen. Genet. , vol.257 , pp. 686-692
    • Roush, A.A.1    Suarex, M.2    Friedberg, E.C.3    Radman, M.4    Siede, W.5
  • 78
    • 0030700468 scopus 로고    scopus 로고
    • A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae
    • Holbeck S.L., Strathern J.N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics. 147:1997;1017-1024.
    • (1997) Genetics , vol.147 , pp. 1017-1024
    • Holbeck, S.L.1    Strathern, J.N.2
  • 79
    • 0028887950 scopus 로고
    • Suppressors of thermosensititive mutations in the DNA polymerase δ gene of Saccharomyces cerevisiae
    • Giot L., Simon M., Dubois C., Faye G. Suppressors of thermosensititive mutations in the DNA polymerase δ gene of Saccharomyces cerevisiae. Mol. Gen. Genet. 246:1995;212-222.
    • (1995) Mol. Gen. Genet. , vol.246 , pp. 212-222
    • Giot, L.1    Simon, M.2    Dubois, C.3    Faye, G.4
  • 80
    • 0031443646 scopus 로고    scopus 로고
    • Multiple pathways for SOS-induced mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogneous treatment to damage DNA
    • Kim S.R., Naenhat M.G., Yamada M., Yamamoto Y., Matsui K., Sofuni T., Nohmi T., Ohmori H. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogneous treatment to damage DNA. Proc. Natl. Acad. Sci. U. S. A. 94:1997;13792-13797.
    • (1997) Proc. Natl. Acad. Sci. U. S. A. , vol.94 , pp. 13792-13797
    • Kim, S.R.1    Naenhat, M.G.2    Yamada, M.3    Yamamoto, Y.4    Matsui, K.5    Sofuni, T.6    Nohmi, T.7    Ohmori, H.8
  • 81
    • 0033564917 scopus 로고    scopus 로고
    • Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity
    • Masutani C., Araki M., Yamada A., Kusumoto R., Nogimori T., Maekawa T., Iwai S., Hanaoka F. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:1999;3491-3501.
    • (1999) EMBO J. , vol.18 , pp. 3491-3501
    • Masutani, C.1    Araki, M.2    Yamada, A.3    Kusumoto, R.4    Nogimori, T.5    Maekawa, T.6    Iwai, S.7    Hanaoka, F.8
  • 83
    • 0028281443 scopus 로고
    • The characterization of a mammalian DNA structure-specific endonuclease
    • Harrington J.J., Lieber M.R. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13:1994;1235-1246.
    • (1994) EMBO J. , vol.13 , pp. 1235-1246
    • Harrington, J.J.1    Lieber, M.R.2
  • 84
    • 0028335180 scopus 로고
    • Functional domains within Fen-1 and Rad2 define a family of structure-specific endonucleases - implications for nucleotide excision-repair
    • Harrington J.J., Lieber M.R. Functional domains within Fen-1 and Rad2 define a family of structure-specific endonucleases - implications for nucleotide excision-repair. Genes Dev. 8:1994;1344-1355.
    • (1994) Genes Dev. , vol.8 , pp. 1344-1355
    • Harrington, J.J.1    Lieber, M.R.2
  • 85
    • 0028089040 scopus 로고
    • The Calf 5′ to 3′ exonuclease is also an endonuclease with both activities dependent on primers annealed upstream of the point of cleavage
    • Murante R.S., Huang L., Turchi J.J., Bambara R.A. The Calf 5′ to 3′ exonuclease is also an endonuclease with both activities dependent on primers annealed upstream of the point of cleavage. J. Biol. Chem. 269:1994;1191-1196.
    • (1994) J. Biol. Chem. , vol.269 , pp. 1191-1196
    • Murante, R.S.1    Huang, L.2    Turchi, J.J.3    Bambara, R.A.4
  • 86
    • 0028890919 scopus 로고
    • Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision-repair gene
    • Reagan M.S., Pittenger C., Siede W., Friedberg E.C. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision-repair gene. J. Bacteriol. 177:1995;364-371.
    • (1995) J. Bacteriol. , vol.177 , pp. 364-371
    • Reagan, M.S.1    Pittenger, C.2    Siede, W.3    Friedberg, E.C.4
  • 87
    • 0028947298 scopus 로고
    • Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′ to 3′-exonuclease required for lagging strand DNA synthesis in reconstituted systems
    • Sommers C.H., Miller E.J., Dujon B., Prakash S., Prakash L. Conditional lethality of null mutations in RTH1 that encodes the yeast counterpart of a mammalian 5′ to 3′-exonuclease required for lagging strand DNA synthesis in reconstituted systems. J. Biol. Chem. 270:1995;4193-4196.
    • (1995) J. Biol. Chem. , vol.270 , pp. 4193-4196
    • Sommers, C.H.1    Miller, E.J.2    Dujon, B.3    Prakash, S.4    Prakash, L.5
  • 88
    • 0029039868 scopus 로고
    • Requirement for the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA
    • Johnson R.E., Gopala K.K., Prakash L., Prakash S. Requirement for the yeast RTH1 5′ to 3′ exonuclease for the stability of simple repetitive DNA. Science. 269:1995;238-240.
    • (1995) Science , vol.269 , pp. 238-240
    • Johnson, R.E.1    Gopala, K.K.2    Prakash, L.3    Prakash, S.4
  • 89
    • 0031442653 scopus 로고    scopus 로고
    • A novel mutation avoidance mechanism dependent on Saccharomyces cerevisiae RAD27 is distinct from DNA mismatch repair
    • Tishkoff D.X., Filosi N., Gaida G.M., Kolodner R.D. A novel mutation avoidance mechanism dependent on Saccharomyces cerevisiae RAD27 is distinct from DNA mismatch repair. Cell. 88:1997;253-263.
    • (1997) Cell , vol.88 , pp. 253-263
    • Tishkoff, D.X.1    Filosi, N.2    Gaida, G.M.3    Kolodner, R.D.4
  • 90
    • 0029098312 scopus 로고
    • A new yeast gene required for DNA replication encodes a protein with homology to DNA helicases
    • Budd M.E., Campbell J.L. A new yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc. Natl. Acad. Sci. U. S. A. 92:1995;7642-7646.
    • (1995) Proc. Natl. Acad. Sci. U. S. A. , vol.92 , pp. 7642-7646
    • Budd, M.E.1    Campbell, J.L.2
  • 91
    • 0032500542 scopus 로고    scopus 로고
    • Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP
    • Bae S., Choi E., Lee K., Park J., Lee S., Seo Y. Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP. J. Biol. Chem. 273:1998;26880-26890.
    • (1998) J. Biol. Chem. , vol.273 , pp. 26880-26890
    • Bae, S.1    Choi, E.2    Lee, K.3    Park, J.4    Lee, S.5    Seo, Y.6
  • 92
    • 0030687647 scopus 로고    scopus 로고
    • Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase
    • Fiorentino D.F., Crabtree G.R. Characterization of Saccharomyces cerevisiae dna2 mutants suggests a role for the helicase late in S phase. Mol. Biol. Cell. 8:1997;2519-2537.
    • (1997) Mol. Biol. Cell , vol.8 , pp. 2519-2537
    • Fiorentino, D.F.1    Crabtree, G.R.2
  • 93
    • 0033105094 scopus 로고    scopus 로고
    • Conserved domains in DNA repair proteins and evolution of repair systems
    • Aravind L., Walker D.R., Koonin E.V. Conserved domains in DNA repair proteins and evolution of repair systems. Nuc. Acids Res. 27:1999;1223-1242.
    • (1999) Nuc. Acids Res. , vol.27 , pp. 1223-1242
    • Aravind, L.1    Walker, D.R.2    Koonin, E.V.3
  • 94
    • 0029119097 scopus 로고
    • Novel DNA biniding motifs in the DNA repair enzyme endonuclease III crystal structure
    • Thayer M.M., Ahern H., Xing D., Cunningham R.P., Tainer J.A. Novel DNA biniding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 14:1995;4108-4120.
    • (1995) EMBO J. , vol.14 , pp. 4108-4120
    • Thayer, M.M.1    Ahern, H.2    Xing, D.3    Cunningham, R.P.4    Tainer, J.A.5
  • 95
    • 0031000629 scopus 로고    scopus 로고
    • A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function
    • Budd M.E., Campbell J.L. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol. Cell. Biol. 17:1997;2136-2142.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 2136-2142
    • Budd, M.E.1    Campbell, J.L.2
  • 96
    • 0032943760 scopus 로고    scopus 로고
    • Dna2 mutants reveal interactions with DNA polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full DNA2 helicase activity is not essential for growth
    • Formosa T., Nitiss T. Dna2 mutants reveal interactions with DNA polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full DNA2 helicase activity is not essential for growth. Genetics. 151:1999;1459-1470.
    • (1999) Genetics , vol.151 , pp. 1459-1470
    • Formosa, T.1    Nitiss, T.2
  • 97
    • 0026441119 scopus 로고
    • Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase a, acts in DNA metabolism in vivo
    • Miles J., Formosa T. Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase a, acts in DNA metabolism in vivo. Mol. Cell. Biol. 12:1992;5274-5735.
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 5274-5735
    • Miles, J.1    Formosa, T.2
  • 99
    • 0032974345 scopus 로고    scopus 로고
    • Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27
    • Parenteau J., Wellinger R.J. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 19:1999;4143-4152.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4143-4152
    • Parenteau, J.1    Wellinger, R.J.2
  • 100
    • 0032931844 scopus 로고    scopus 로고
    • The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joing, or telomere maintenance
    • Moreau S., Ferguson J.R., Symington L.S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joing, or telomere maintenance. Mol. Cell Biol. 19:1999;556-566.
    • (1999) Mol. Cell Biol. , vol.19 , pp. 556-566
    • Moreau, S.1    Ferguson, J.R.2    Symington, L.S.3
  • 101
    • 0033612189 scopus 로고    scopus 로고
    • MEC1-dependent redistribution of the Sir3 silening protein from telomeres to DNA double-strand breaks
    • Mills K.D., Sinclair D.A., Guarente L. MEC1-dependent redistribution of the Sir3 silening protein from telomeres to DNA double-strand breaks. Cell. 97:1999;609-620.
    • (1999) Cell , vol.97 , pp. 609-620
    • Mills, K.D.1    Sinclair, D.A.2    Guarente, L.3
  • 102
    • 0033612287 scopus 로고    scopus 로고
    • Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast
    • Martin S.G. Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell. 97:1999;621-633.
    • (1999) Cell , vol.97 , pp. 621-633
    • Martin, S.G.1
  • 103
    • 0030764691 scopus 로고    scopus 로고
    • HMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks
    • Maser R.S., Monsen K.J., Nelms B.E., Petrini J.H.J. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17:1997;6087-6096.
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 6087-6096
    • Maser, R.S.1    Monsen, K.J.2    Nelms, B.E.3    Petrini, J.H.J.4
  • 104
    • 0032716109 scopus 로고    scopus 로고
    • Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily
    • Gerlach V.L., Aravid L., Gotway G., Schulz R.A., Koonin E.V., Friedberg E.C. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc. Natl. Acad. Sci. USA. 96:1999;11922-11927.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 11922-11927
    • Gerlach, V.L.1    Aravid, L.2    Gotway, G.3    Schulz, R.A.4    Koonin, E.V.5    Friedberg, E.C.6
  • 105
    • 0028608961 scopus 로고
    • DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae
    • Blank A., Kim B., Loeb L. DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 91:1994;9047-9051.
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , pp. 9047-9051
    • Blank, A.1    Kim, B.2    Loeb, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.