메뉴 건너뛰기




Volumn 18, Issue 2, 1998, Pages 229-235

Predicting mortality after coronary artery bypass surgery: What do artificial neural networks learn?

Author keywords

Cardiac surgery; Logistic regression; Mortality; Neural networks; ROC curves

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; CORONARY ARTERY BYPASS SURGERY; MATHEMATICAL ANALYSIS; MATHEMATICAL MODEL; MORTALITY; PROBABILITY; REGRESSION ANALYSIS; STATISTICS;

EID: 0031893485     PISSN: 0272989X     EISSN: None     Source Type: Journal    
DOI: 10.1177/0272989X9801800212     Document Type: Article
Times cited : (40)

References (25)
  • 1
    • 0025934806 scopus 로고
    • Use of an artificial neural network for the diagnosis of myocarclial infarction
    • Baxt WG. Use of an artificial neural network for the diagnosis of myocarclial infarction. Ann Intern Med. 1991;115:843-8.
    • (1991) Ann Intern Med. , vol.115 , pp. 843-848
    • Baxt, W.G.1
  • 2
    • 0030061822 scopus 로고    scopus 로고
    • Prospective validation of artificial neural network trained io identify acute myocardial infarction
    • Baxt WG, Skora J. Prospective validation of artificial neural network trained io identify acute myocardial infarction. Lancet. 1996:347:12-5.
    • (1996) Lancet. , vol.347 , pp. 12-15
    • Baxt, W.G.1    Skora, J.2
  • 3
    • 0028285351 scopus 로고
    • A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit
    • Buchman TG, Kubos KL, Seidler AJ, Siegforth MJ. A comparison of statistical and connectionist models for the prediction of chronicity in a surgical intensive care unit. Crit Care Med. 1994;22:750-62.
    • (1994) Crit Care Med. , vol.22 , pp. 750-762
    • Buchman, T.G.1    Kubos, K.L.2    Seidler, A.J.3    Siegforth, M.J.4
  • 4
    • 0030603526 scopus 로고    scopus 로고
    • Prediction of outcome in critically ill patients using artificial neural network synthesized by genetic algorithm
    • Dybowski H, Weller P, Chang K, Gant V. Prediction of outcome in critically ill patients using artificial neural network synthesized by genetic algorithm. Lancet. 1996:347:1146-50.
    • (1996) Lancet. , vol.347 , pp. 1146-1150
    • Dybowski, H.1    Weller, P.2    Chang, K.3    Gant, V.4
  • 5
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996:49:1225-31.
    • (1996) J Clin Epidemiol. , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 7
    • 0029840811 scopus 로고    scopus 로고
    • Neural networks in clinical medicine
    • Penny W, Frost D. Neural networks in clinical medicine. Med Decis Making. 1996;16:386-98.
    • (1996) Med Decis Making. , vol.16 , pp. 386-398
    • Penny, W.1    Frost, D.2
  • 8
    • 10544228524 scopus 로고    scopus 로고
    • Coronary artery bypass mortality rates in Ontario: A Canadian approach to quality assurance in cardiac surgery
    • Steering Committee of the Provincial Adult Cardiac Care Network of Ontario.
    • Tu JV, Naylor CD. Steering Committee of the Provincial Adult Cardiac Care Network of Ontario. Coronary artery bypass mortality rates in Ontario: a Canadian approach to quality assurance in cardiac surgery. Circulation. 1996:94:2429-33.
    • (1996) Circulation. , vol.94 , pp. 2429-2433
    • Tu, J.V.1    Naylor, C.D.2
  • 9
    • 0028893946 scopus 로고
    • Multicenter validation of a risk index for mortality, intensive care unit stay, and overall hospital of stay after cardiac surgery
    • Steering Committee of the Provincial Adult Cardiac Care Network of Ontario.
    • Tu JV, Jaglal SB, Naylor CD. Steering Committee of the Provincial Adult Cardiac Care Network of Ontario. Multicenter validation of a risk index for mortality, intensive care unit stay, and overall hospital of stay after cardiac surgery. Circulation. 1995;91:677-84.
    • (1995) Circulation. , vol.91 , pp. 677-684
    • Tu, J.V.1    Jaglal, S.B.2    Naylor, C.D.3
  • 10
    • 0026519435 scopus 로고
    • Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients: A clinical severity score
    • Higgins TL, Estafanous FG, Loop FD, Beck GJ, Blum JM, Paranandi L. Stratification of morbidity and mortality outcome by preoperative risk factors in coronary artery bypass patients: a clinical severity score. JAMA. 1992;267:2344-8.
    • (1992) JAMA. , vol.267 , pp. 2344-2348
    • Higgins, T.L.1    Estafanous, F.G.2    Loop, F.D.3    Beck, G.J.4    Blum, J.M.5    Paranandi, L.6
  • 11
    • 0026734678 scopus 로고
    • Multivariate prediction of in-hospital mortality associated with coronary artery bypass graft surgery
    • Northern New England Cardiovascular Disease Study Group.
    • O'Connor GT, Plume SK, Olmstead EM, et al. Northern New England Cardiovascular Disease Study Group. Multivariate prediction of in-hospital mortality associated with coronary artery bypass graft surgery. Circulation. 1992;85:2110-8.
    • (1992) Circulation. , vol.85 , pp. 2110-2118
    • O'Connor, G.T.1    Plume, S.K.2    Olmstead, E.M.3
  • 12
    • 84942384006 scopus 로고
    • Improving live outcomes of coronary artery bypass surgery in New York State
    • Hannan EL, Kolburn H Jr, Racz M, Shields E, Chassin MR. Improving live outcomes of coronary artery bypass surgery in New York State. JAMA. 1994;271:761-6.
    • (1994) JAMA. , vol.271 , pp. 761-766
    • Hannan, E.L.1    Kolburn Jr., H.2    Racz, M.3    Shields, E.4    Chassin, M.R.5
  • 13
    • 84907105591 scopus 로고
    • Evaluating black-boxes as medical decision aids: Issues arising from a study of neural networks
    • Hart A, Wyatt J. Evaluating black-boxes as medical decision aids: issues arising from a study of neural networks. Mod Inform. 1990;15:229-36.
    • (1990) Mod Inform. , vol.15 , pp. 229-236
    • Hart, A.1    Wyatt, J.2
  • 14
    • 0004941790 scopus 로고    scopus 로고
    • Ward Systems Group, Inc., Frederick, MD
    • Neuroshell 2. Ward Systems Group, Inc., Frederick, MD.
    • Neuroshell 2
  • 15
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 1986;323:533-6.
    • (1986) Nature. , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 16
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard MD, Lippman RP. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation. 1991;3:461-3.
    • (1991) Neural Computation. , vol.3 , pp. 461-463
    • Richard, M.D.1    Lippman, R.P.2
  • 18
    • 0003115880 scopus 로고
    • Evaluating the performance of risk-adjustment methods: Continuous measures
    • Iezzoni LI (ed). Ann Arbor, MI: Health Administration Press
    • Shwartz M, Ash AS. Evaluating the performance of risk-adjustment methods: continuous measures. In: Iezzoni LI (ed). Risk Adjustment for Measuring Health Care Outcomes. Ann Arbor, MI: Health Administration Press, 1994:287-311.
    • (1994) Risk Adjustment for Measuring Health Care Outcomes , pp. 287-311
    • Shwartz, M.1    Ash, A.S.2
  • 19
    • 6844259834 scopus 로고
    • College Station, TX
    • Stata Release 4.0. College Station, TX, 1995.
    • (1995) Stata Release 4.0
  • 20
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29-36.
    • (1982) Radiology. , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 21
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839-43.
    • (1983) Radiology. , vol.148 , pp. 839-843
    • Hanley, J.A.1    McNeil, B.J.2
  • 22
    • 0026438282 scopus 로고
    • Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction
    • Baxt WG. Analysis of the clinical variables driving decision in an artificial neural network trained to identify the presence of myocardial infarction. Ann Emerg Med. 1992;21:1439-44.
    • (1992) Ann Emerg Med. , vol.21 , pp. 1439-1444
    • Baxt, W.G.1
  • 23
    • 0027733424 scopus 로고
    • Modeling mortality in the intensive care unit: Comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression
    • Washington, DC: McGraw-Hill
    • Doig GS, Inman KJ, Sibbald WJ, Martin CM, Robertson JM. Modeling mortality in the intensive care unit: comparing the performance of a back-propagation, associative-learning neural network with multivariate logistic regression. In: Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medical Care. Washington, DC: McGraw-Hill, 1993; pp 361-5.
    • (1993) Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medical Care , pp. 361-365
    • Doig, G.S.1    Inman, K.J.2    Sibbald, W.J.3    Martin, C.M.4    Robertson, J.M.5
  • 24
    • 0028167508 scopus 로고
    • Evaluation of the PAPNET cytologic screening system for quality control of cervical smears
    • Koss LG, Lin E, Schreiber K, Elgert P, Mango L. Evaluation of the PAPNET cytologic screening system for quality control of cervical smears. Am J Clin Pathol. 1994;101:220-9.
    • (1994) Am J Clin Pathol. , vol.101 , pp. 220-229
    • Koss, L.G.1    Lin, E.2    Schreiber, K.3    Elgert, P.4    Mango, L.5
  • 25
    • 0030273084 scopus 로고    scopus 로고
    • Agreement between artificial neural networks and experienced electrocardiographer on electrocardiographic diagnosis of healed myocardial infarction
    • Heden B, Ohlsson M, Rittner R, et al. Agreement between artificial neural networks and experienced electrocardiographer on electrocardiographic diagnosis of healed myocardial infarction. J Am Coll Cardiol. 1996;28:1012-6.
    • (1996) J Am Coll Cardiol. , vol.28 , pp. 1012-1016
    • Heden, B.1    Ohlsson, M.2    Rittner, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.