-
2
-
-
0030718088
-
Introducing the sphericle: An experimental testbed for research and teaching in nonholonomy
-
A. Bicchi, A. Balluchi, D. Prattichizzo, and A. Gorelli, "Introducing the sphericle: An experimental testbed for research and teaching in nonholonomy," in Proc. IEEE Int. Conf. Robototics and Automation, 1997.
-
(1997)
Proc. IEEE Int. Conf. Robototics and Automation
-
-
Bicchi, A.1
Balluchi, A.2
Prattichizzo, D.3
Gorelli, A.4
-
3
-
-
0031637221
-
Roll MOBS, a new universal wheel concept
-
L. Ferriere and B. Raucent, "Roll MOBS, a new universal wheel concept," in Proc. 1998 IEEE Int. Conf. Robotics and Automation, vol. 3, 1998, pp. 1877-1882.
-
(1998)
Proc. 1998 IEEE Int. Conf. Robotics and Automation
, vol.3
, pp. 1877-1882
-
-
Ferriere, L.1
Raucent, B.2
-
5
-
-
21344497588
-
The geometry of the plate-ball problem
-
V. Jurdjevic, "The geometry of the plate-ball problem," Arch. Ration. Mech. Anal., vol. 124, pp. 305-328, 1993.
-
(1993)
Arch. Ration. Mech. Anal.
, vol.124
, pp. 305-328
-
-
Jurdjevic, V.1
-
6
-
-
0002147831
-
A differential geometric approach to motion planning
-
Z. Li and J. F. Canny, Eds. Norwell, MA: Kluwer
-
G. Lafferriere and H. Sussmann, "A differential geometric approach to motion planning," in Nonholonomic Motion Planning, Z. Li and J. F. Canny, Eds. Norwell, MA: Kluwer, 1993, pp. 235-270.
-
(1993)
Nonholonomic Motion Planning
, pp. 235-270
-
-
Lafferriere, G.1
Sussmann, H.2
-
8
-
-
0031372885
-
Optimal trajectory planning for mobile robots using Jacobian elliptic functions
-
R. Mukherjee, B. Emond, and J. L. Junkins, "Optimal trajectory planning for mobile robots using Jacobian elliptic functions," Int. J. Robot. Res., vol. 16, no. 6, pp. 826-839, 1997.
-
(1997)
Int. J. Robot. Res.
, vol.16
, Issue.6
, pp. 826-839
-
-
Mukherjee, R.1
Emond, B.2
Junkins, J.L.3
-
11
-
-
0008705226
-
Globally feedback linearizable time-invariant systems: Optimal solution for Mayer's cost
-
M. Schlemmer and S. K. Agrawal, "Globally feedback linearizable time-invariant systems: Optimal solution for Mayer's cost," ASME J. Dyn. Syst. Measure. Contr., vol. 120, no. 2, pp. 343-347, 2000.
-
(2000)
ASME J. Dyn. Syst. Measure. Contr.
, vol.120
, Issue.2
, pp. 343-347
-
-
Schlemmer, M.1
Agrawal, S.K.2
-
12
-
-
0035217296
-
Finite-time optimal control of polynomial systems using successive approximation
-
May
-
X. Xu and S. K. Agrawal, "Finite-time optimal control of polynomial systems using successive approximation," J. Optim. Theory Applicat., vol. 105, no. 2, pp. 477-489, May 2000.
-
(2000)
J. Optim. Theory Applicat.
, vol.105
, Issue.2
, pp. 477-489
-
-
Xu, X.1
Agrawal, S.K.2
|