메뉴 건너뛰기




Volumn 12, Issue 9, 2000, Pages 2129-2174

Stable encoding of finite-state machines in discrete-time recurrent neural nets with Sigmoid units

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; NERVE CELL NETWORK; STATISTICAL MODEL;

EID: 0034268994     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/089976600300015097     Document Type: Article
Times cited : (26)

References (56)
  • 2
    • 0040973442 scopus 로고
    • An algebraic framework to represent finite state automata in single-layer recurrent neural networks
    • Alquézar, R., & Sanfeliu, A. (1995). An algebraic framework to represent finite state automata in single-layer recurrent neural networks. Neural Computation, 7, 931-949.
    • (1995) Neural Computation , vol.7 , pp. 931-949
    • Alquézar, R.1    Sanfeliu, A.2
  • 3
    • 84902201900 scopus 로고    scopus 로고
    • Annealing RNN learning of finite state automata
    • Arai, K.-I., & Nakano, R. (1996). Annealing RNN learning of finite state automata. In Proceedings of ICANN'96 (pp. 519-524).
    • (1996) Proceedings of ICANN'96 , pp. 519-524
    • Arai, K.-I.1    Nakano, R.2
  • 5
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 6
    • 0000392660 scopus 로고    scopus 로고
    • Analysis of dynamical recognizers
    • Blair, A., & Pollack, J. B. (1997). Analysis of dynamical recognizers. Neural Computation, 9(5), 1127-1142.
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1127-1142
    • Blair, A.1    Pollack, J.B.2
  • 7
    • 84958959359 scopus 로고    scopus 로고
    • Inferring stochastic regular grammars with recurrent neural networks
    • L. Miclet & C. de la Higuera (Eds.), Berlin: Springer-Verlag
    • Carrasco, R. C., Forcada, M. L., & Santamaría, L. (1996). Inferring stochastic regular grammars with recurrent neural networks. In L. Miclet & C. de la Higuera (Eds.), Grammatical inference: Learning syntax from sentences (pp. 274-281). Berlin: Springer-Verlag.
    • (1996) Grammatical Inference: Learning Syntax from Sentences , pp. 274-281
    • Carrasco, R.C.1    Forcada, M.L.2    Santamaría, L.3
  • 9
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey, M. (1996). The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8(6), 1135-1178.
    • (1996) Neural Computation , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.1
  • 10
    • 0012959541 scopus 로고    scopus 로고
    • Correction to proof that recurrent neural networks can robustly recognize only regular languages
    • Casey, M. (1998). Correction to proof that recurrent neural networks can robustly recognize only regular languages. Neural Computation, 10(5), 1067-1069.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1067-1069
    • Casey, M.1
  • 12
    • 0003163366 scopus 로고
    • Induction of discrete state-machine by stabilizing a continuous recurrent network using clustering
    • Das, S., & Das, R. (1991). Induction of discrete state-machine by stabilizing a continuous recurrent network using clustering. Computer Science and Informatics, 21(2), 35-40.
    • (1991) Computer Science and Informatics , vol.21 , Issue.2 , pp. 35-40
    • Das, S.1    Das, R.2
  • 13
    • 0031915593 scopus 로고    scopus 로고
    • Dynamic on-line clustering and state extraction: An approach to symbolic learning
    • Das, S., & Mozer, M. (1998). Dynamic on-line clustering and state extraction: An approach to symbolic learning. Neural Networks, 11(1), 53-64.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 53-64
    • Das, S.1    Mozer, M.2
  • 14
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 16
    • 0003979694 scopus 로고
    • Learning the initial state of a second-order recurrent neural network during regular-language inference
    • Forcada, M. L., & Carrasco, R. C. (1995). Learning the initial state of a second-order recurrent neural network during regular-language inference. Neural Computation, 7(5), 923-930.
    • (1995) Neural Computation , vol.7 , Issue.5 , pp. 923-930
    • Forcada, M.L.1    Carrasco, R.C.2
  • 17
    • 0030125824 scopus 로고    scopus 로고
    • Representation of finite-state automata in recurrent radial basis function networks
    • Frasconi, P., Gori, M., Maggini, M., & Soda, G. (1996). Representation of finite-state automata in recurrent radial basis function networks. Machine Learning, 23, 5-32.
    • (1996) Machine Learning , vol.23 , pp. 5-32
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 18
    • 0001327717 scopus 로고
    • Learning and extracted finite state automata with second-order recurrent neural networks
    • Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., & Lee, Y. C. (1992). Learning and extracted finite state automata with second-order recurrent neural networks. Neural Computation, 4(3), 393-405.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 19
    • 0032074270 scopus 로고    scopus 로고
    • Inductive inference from noisy examples using the hybrid finite state filter
    • Gori, M., Maggini, M., Martinelli, E., & Soda, G. (1998). Inductive inference from noisy examples using the hybrid finite state filter. IEEE Transactions on Neural Networks, 9(3), 571-575.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.3 , pp. 571-575
    • Gori, M.1    Maggini, M.2    Martinelli, E.3    Soda, G.4
  • 24
    • 85153949982 scopus 로고
    • An experimental comparison of recurrent neural networks
    • G. Tesauro, D. Touretzky, & T. Leen (Eds.), Cambridge, MA: MIT Press
    • Home, B. G., & Giles, C. L. (1995). An experimental comparison of recurrent neural networks. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems, 7 (pp. 697-704). Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 697-704
    • Home, B.G.1    Giles, C.L.2
  • 25
    • 0030110968 scopus 로고    scopus 로고
    • Bounds on the complexity of recurrent neural network implementations of finite state machines
    • Home, B. G., & Hush, D. R. (1996). Bounds on the complexity of recurrent neural network implementations of finite state machines. Neural Networks, 9(2), 243-252.
    • (1996) Neural Networks , vol.9 , Issue.2 , pp. 243-252
    • Home, B.G.1    Hush, D.R.2
  • 26
    • 85032752004 scopus 로고
    • Progress in supervised neural networks
    • Hush, D., & Home, B. (1993). Progress in supervised neural networks. IEEE Signal Processing Magazine, 10(1), 8-39.
    • (1993) IEEE Signal Processing Magazine , vol.10 , Issue.1 , pp. 8-39
    • Hush, D.1    Home, B.2
  • 28
    • 0003067817 scopus 로고
    • Representation of events innerve nets and finite automata
    • C. E. Shannon & J. McCarthy (Eds.), Princeton, NJ: Princeton University Press
    • Kleene, S. C. (1956). Representation of events innerve nets and finite automata. In C. E. Shannon & J. McCarthy (Eds.), Automata studies Princeton, NJ: Princeton University Press.
    • (1956) Automata Studies
    • Kleene, S.C.1
  • 29
    • 0002046921 scopus 로고
    • Fool's gold: Extracting finite state machines from recurrent network dynamics
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Mateo, CA: Morgan Kaufmann
    • Kolen, J. F. (1994). Fool's gold: Extracting finite state machines from recurrent network dynamics. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems, 6 (pp. 501-508). San Mateo, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 501-508
    • Kolen, J.F.1
  • 31
    • 0029342226 scopus 로고
    • On the computational power of Elman-style recurrent networks
    • Kremer, S. C. (1995). On the computational power of Elman-style recurrent networks. IEEE Transactions on Neural Networks, 6(4), 1000-1004.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 1000-1004
    • Kremer, S.C.1
  • 33
    • 0040379161 scopus 로고    scopus 로고
    • Constrained second-order recurrent networks for finite-state automata induction
    • L. Niklasson, M. Bodén, & T. Ziemke (Eds.), London: Springer
    • Kremer, S., Ñeco, R. P., & Forcada, M. L. (1998). Constrained second-order recurrent networks for finite-state automata induction. In L. Niklasson, M. Bodén, & T. Ziemke (Eds.), Proceedings of the 8th International Conference on Artificial Neural Networks ICANN'98 (Vol. 2, pp. 529-534). London: Springer.
    • (1998) Proceedings of the 8th International Conference on Artificial Neural Networks ICANN'98 , vol.2 , pp. 529-534
    • Kremer, S.1    Ñeco, R.P.2    Forcada, M.L.3
  • 34
    • 84945712332 scopus 로고
    • Fixed point analysis for discrete-time recurrent neural networks
    • Li, L.K. (1992). Fixed point analysis for discrete-time recurrent neural networks. In Proceedings of IJCNN (Vol. 4, pp. 134-139).
    • (1992) Proceedings of IJCNN , vol.4 , pp. 134-139
    • Li, L.K.1
  • 35
    • 0001243798 scopus 로고    scopus 로고
    • On the effect of analog noise in discrete-time analog computations
    • Maass, W., & Orponen, P. (1998). On the effect of analog noise in discrete-time analog computations. Neural Computation, 10(5), 1071-1095.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1071-1095
    • Maass, W.1    Orponen, P.2
  • 36
    • 0033110325 scopus 로고    scopus 로고
    • Analog neural nets with gaussian or other common noise distribution cannot recognize arbitrary regular languages
    • Maass, W., & Sontag, E. D. (1999). Analog neural nets with gaussian or other common noise distribution cannot recognize arbitrary regular languages. Neural Computation, 21(3), 771-782.
    • (1999) Neural Computation , vol.21 , Issue.3 , pp. 771-782
    • Maass, W.1    Sontag, E.D.2
  • 37
    • 0006311788 scopus 로고
    • First order recurrent neural networks and deterministic finite state automata
    • Manolios, P., & Fanelli, R. (1994). First order recurrent neural networks and deterministic finite state automata. Neural Computation, 6(6), 1154-1172.
    • (1994) Neural Computation , vol.6 , Issue.6 , pp. 1154-1172
    • Manolios, P.1    Fanelli, R.2
  • 39
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.H.2
  • 44
    • 0030286473 scopus 로고    scopus 로고
    • Constructing deterministic finite-state automata in recurrent neural networks
    • Omlin, C. W., & Giles, C. L. (1996a). Constructing deterministic finite-state automata in recurrent neural networks. Journal of the ACM, 43(6), 937-972.
    • (1996) Journal of the ACM , vol.43 , Issue.6 , pp. 937-972
    • Omlin, C.W.1    Giles, C.L.2
  • 45
    • 0030585201 scopus 로고    scopus 로고
    • Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants
    • Omlin, C. W., & Giles, C. L. (1996b). Stable encoding of large finite-state automata in recurrent neural networks with sigmoid discriminants. Neural Computation, 8, 675-696.
    • (1996) Neural Computation , vol.8 , pp. 675-696
    • Omlin, C.W.1    Giles, C.L.2
  • 46
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • Pollack, J. B. (1991). The induction of dynamical recognizers. Machine Learning, 7, 227-252.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.B.1
  • 47
    • 0000329355 scopus 로고
    • A recurrent error propagation network speech recognition system
    • Robinson, T., & Fallside, F. (1991). A recurrent error propagation network speech recognition system. Computer Speech and Language, 5, 259-274.
    • (1991) Computer Speech and Language , vol.5 , pp. 259-274
    • Robinson, T.1    Fallside, F.2
  • 48
    • 0042922638 scopus 로고
    • Active grammatical inference: A new learning methodology
    • D. Dori & A. Bruckstein (Eds.), Singapore: World Scientific
    • Sanfeliu, A., & Alquézar, R. (1994). Active grammatical inference: A new learning methodology. In D. Dori & A. Bruckstein (Eds.), Shape and structure in pattern recognition. Singapore: World Scientific.
    • (1994) Shape and Structure in Pattern Recognition
    • Sanfeliu, A.1    Alquézar, R.2
  • 49
    • 0031378623 scopus 로고    scopus 로고
    • Analog stable simulation of discrete neural networks
    • Šíma, J. (1997). Analog stable simulation of discrete neural networks. Neural Network World, 7, 679-686.
    • (1997) Neural Network World , vol.7 , pp. 679-686
    • Šíma, J.1
  • 51
    • 0002054987 scopus 로고    scopus 로고
    • Finite state machines and recurrent neural networks - Automata and dynamical systems approaches
    • J. E. Dayhoff & O. Omidvar (Eds.), San Diego, CA: Academic
    • Tiňo, P., Horne, B. G., Giles, C. L., & Colingwood, P. C. (1998). Finite state machines and recurrent neural networks - automata and dynamical systems approaches. In J. E. Dayhoff & O. Omidvar (Eds.), Neural networks and pattern recognition (pp. 171-220). San Diego, CA: Academic.
    • (1998) Neural Networks and Pattern Recognition , pp. 171-220
    • Tiňo, P.1    Horne, B.G.2    Giles, C.L.3    Colingwood, P.C.4
  • 52
    • 0040726637 scopus 로고
    • Learning and extracting initial mealy automata with a modular neural network model
    • Tiňo, P., & Sajda, J. (1995). Learning and extracting initial Mealy automata with a modular neural network model. Neural Computation, 7(4).
    • (1995) Neural Computation , vol.7 , Issue.4
    • Tiňo, P.1    Sajda, J.2
  • 53
    • 0031171247 scopus 로고    scopus 로고
    • Discrete time recurrent neural network architectures: A unifying review
    • Tsoi, A. C., & Back, A. (1997). Discrete time recurrent neural network architectures: A unifying review. Neurocomputing, 15, 183-223.
    • (1997) Neurocomputing , vol.15 , pp. 183-223
    • Tsoi, A.C.1    Back, A.2
  • 54
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous, R. L., & Kuhn, G. M. (1992). Induction of finite-state languages using second-order recurrent networks. Neural Computation, 4(3), 406-414.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 55
    • 0028396478 scopus 로고
    • Discrete recurrent neural networks for grammatical inference
    • Zeng, Z., Goodman, R. M., & Smyth, P. (1994). Discrete recurrent neural networks for grammatical inference. IEEE Transactions on Neural Networks, 5(2), 320-330.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 320-330
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3
  • 56
    • 0000003489 scopus 로고
    • Learning finite state machines with self-clustering recurrent networks
    • Zeng, Z., Goodman, R. M., & Smyth, P. (1993). Learning finite state machines with self-clustering recurrent networks. Neural Computation, 5(6), 976-990.
    • (1993) Neural Computation , vol.5 , Issue.6 , pp. 976-990
    • Zeng, Z.1    Goodman, R.M.2    Smyth, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.