-
1
-
-
0033897056
-
-
M. Vettraino, M. Trudeau, D. M. Anlonelli, Adv. Mater. 2000, 12, 337.
-
(2000)
Adv. Mater.
, vol.12
, pp. 337
-
-
Vettraino, M.1
Trudeau, M.2
Anlonelli, D.M.3
-
2
-
-
0033576550
-
-
D. R. MacFarlane, J. Huang, M. Forsyth, Nature 1999, 402, 792.
-
(1999)
Nature
, vol.402
, pp. 792
-
-
MacFarlane, D.R.1
Huang, J.2
Forsyth, M.3
-
3
-
-
0026931265
-
-
a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartulli, J. S. Beck, Nature 1992, 559, 710.
-
(1992)
Nature
, vol.559
, pp. 710
-
-
Kresge, C.T.1
Leonowicz, M.E.2
Roth, W.J.3
Vartulli, J.C.4
Beck, J.S.5
-
4
-
-
0012247651
-
-
b) J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Shepard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc. 1992, 114, 10834.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 10834
-
-
Beck, J.S.1
Vartuli, J.C.2
Roth, W.J.3
Leonowicz, M.E.4
Kresge, C.T.5
Schmitt, K.D.6
Chu, C.T.-W.7
Olson, D.H.8
Shepard, E.W.9
McCullen, S.B.10
Higgins, J.B.11
Schlenker, J.L.12
-
5
-
-
33751158704
-
-
a) Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Chem. Mater. 1994, 6, 1176.
-
(1994)
Chem. Mater.
, vol.6
, pp. 1176
-
-
Huo, Q.1
Margolese, D.I.2
Ciesla, U.3
Demuth, D.G.4
Feng, P.5
Gier, T.E.6
Sieger, P.7
Firouzi, A.8
Chmelka, B.F.9
Schuth, F.10
Stucky, G.D.11
-
6
-
-
0029651205
-
-
b) A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, O. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky, B. F. Chmelka, Science 1998, 267, 1138.
-
(1998)
Science
, vol.267
, pp. 1138
-
-
Firouzi, A.1
Kumar, D.2
Bull, L.M.3
Besier, T.4
Sieger, P.5
Huo, O.6
Walker, S.A.7
Zasadzinski, J.A.8
Glinka, C.9
Nicol, J.10
Margolese, D.11
Stucky, G.D.12
Chmelka, B.F.13
-
7
-
-
10844265767
-
-
U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. D. Stucky, K. Unger, F. J. Schuth, J. Chem. Soc., Chem. Commun. 1994, 1387.
-
(1994)
J. Chem. Soc., Chem. Commun.
, pp. 1387
-
-
Ciesla, U.1
Demuth, D.2
Leon, R.3
Petroff, P.4
Stucky, G.D.5
Unger, K.6
Schuth, F.J.7
-
8
-
-
0027887601
-
-
C.-Y. Chen, S. L. Burkette, H.-X. Li, M. E. Davis, Microporous Mater. 1993, 2, 27.
-
(1993)
Microporous Mater.
, vol.2
, pp. 27
-
-
Chen, C.-Y.1
Burkette, S.L.2
Li, H.-X.3
Davis, M.E.4
-
9
-
-
0345926039
-
-
P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature 1994, 368, 321.
-
(1994)
Nature
, vol.368
, pp. 321
-
-
Tanev, P.T.1
Chibwe, M.2
Pinnavaia, T.J.3
-
12
-
-
33750415983
-
-
b) D. M. Antonelli, J. Y. Ying, Angew. Chem., Int. Ed. Engl. 1995, 34, 2014.
-
(1995)
Angew. Chem., Int. Ed. Engl.
, vol.34
, pp. 2014
-
-
Antonelli, D.M.1
Ying, J.Y.2
-
13
-
-
33748228449
-
-
a) D. M. Antonelli, J. Y. Ying, Angew. Chem., Int. Ed. Engl. 1996, 55, 426.
-
(1996)
Angew. Chem., Int. Ed. Engl.
, vol.55
, pp. 426
-
-
Antonelli, D.M.1
Ying, J.Y.2
-
14
-
-
0001146202
-
-
b) D. M. Antonelli, A. Nakahira, J. Y. Ying, Inorg. Chem. 1996, 55, 3126.
-
(1996)
Inorg. Chem.
, vol.55
, pp. 3126
-
-
Antonelli, D.M.1
Nakahira, A.2
Ying, J.Y.3
-
18
-
-
0033577821
-
-
D. M. Antonelli, M. Trudeau, Angew. Chem., Int. Ed. 1999, 38, 1471.
-
(1999)
Angew. Chem., Int. Ed.
, vol.38
, pp. 1471
-
-
Antonelli, D.M.1
Trudeau, M.2
-
19
-
-
0031560768
-
-
Z. R. Tian, J. Y. Wang, N. G. Duan, V. V. Krishnan, S. L. Suib, Science 1997, 276, 926.
-
(1997)
Science
, vol.276
, pp. 926
-
-
Tian, Z.R.1
Wang, J.Y.2
Duan, N.G.3
Krishnan, V.V.4
Suib, S.L.5
-
22
-
-
0343438451
-
-
note
-
A sample of Nb-TMSl with an HK pore size of 29 A was obtained from Alfa-Aesar and used without further purification. The BrunauerEmmett-Teller (BET) surface area of this material was 673 m2/g and the cumulative pore volume was 0.59 cm3 g"1. The infrared (IR) spectrum showed no evidence of a hydrocarbon C-H stretch. The X-ray diffraction (XRD) pattern for this material showed a peak at d = 38 A. Trimethylsilyl chloride was obtained from Aldrich and distilled over calcium hydride. Nb-TMSl samples were dried at 100 °C overnight under vacuum and then stirred with excess trimethylsilyl chloride in dry ether for 4-6 h under nitrogen. The solvent was then removed in vacuo and the material dried again under vacuum at 100 °C overnight.
-
-
-
-
23
-
-
0343874206
-
-
note
-
All elemental analysis was conducted at Galbraith laboratories. The starting material obtained from Alfa-Aesar after treatment with trimethylsilyl chloride gave 53.12 % Nb and 2.57 % C by weight. The material after treatment with 0.07 equivalents of bis-benzene chromium gave values of 51.36 % Nb, 8.30 % C, and 2.02 % Cr.
-
-
-
-
25
-
-
0342568464
-
-
note
-
The bandgaps were recorded from powder UV-vis spectra collected on an Ocean Optics S2000 fiber optics spectrometer equipped with an Analytical Instrument Systems Light Source emitter with a tungsten halogen lamp and an Ocean Optics UV 0.4 mm, 2M reflection probe.
-
-
-
-
27
-
-
0343438452
-
-
note
-
The conductivity measurements were recorded on a Jandel 4 point universal probe head combined with a Jandel resistivity unit. The equations used for calculating the resistivity were as follows: for pellets of <0.1 mm thickness: '=fel)' < For pellets of >0.5 mm thickness the following equation is used: /> = 2n(S)j (2) where p = resistivity; 7t/(logn2) = sheet resistivity; V = volts; J. = current; t = thickness of the pellet; S = the spacing of the probes (0.1 cm).
-
-
-
-
29
-
-
33847549201
-
-
All XPS peaks were reference to the Carbon C-(C, H) peak at 284.8 eV and the data were obtained using a Physical Electronics PHI-5500 using charge neutralization.
-
All XPS peaks were reference to the Carbon C-(C, H) peak at 284.8 eV and the data were obtained using a Physical Electronics PHI-5500 using charge neutralization.
-
-
-
-
32
-
-
0342568462
-
-
note
-
All EPR spectra were recorded at the temperature of liquid nitrogen on an X-band Bruker ESP 300E Spectrometer equipped with a microwave counter, an nuclear magnetic resonance (NMR) magnetometer and an electromagnet capable of providing a magnetic field range from 50 G to 15 kG. The measurement conditions for the spectra in Figure 2a, b were microwave power 2.03 mW, microwave frequency 9.46 GHz, modulation frequency 100.00 kHz, modulation amplitude 4.821 G, and receiver gain 8.00E+03. The measurement conditions for spectrum in Figure 2d were microwave power l.OOE+1 mW, microwave frequency 9.46 GHz, modulation frequency 100.00 kHz, modulation amplitude 0.962 G, receiver gain 2.00E+04. The powder samples used in the experimental measurements were sealed under vacuum in quartz tubes.
-
-
-
|