메뉴 건너뛰기




Volumn 3, Issue 2, 2000, Pages 197-202

Protein folding and unfolding by Escherichia coli chaperones and chaperonins

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; BACTERIAL PROTEIN; CHAPERONIN; HEAT SHOCK PROTEIN 90;

EID: 0034025903     PISSN: 13695274     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1369-5274(00)00075-8     Document Type: Review
Times cited : (38)

References (49)
  • 2
    • 0032474433 scopus 로고    scopus 로고
    • NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain: A preview of chaperone-protein interaction
    • Wang H., Kurochkin A.V., Pang Y., Hu W., Flynn G.C., Zuiderweg E.R. NMR solution structure of the 21 kDa chaperone protein DnaK substrate binding domain. a preview of chaperone-protein interaction Biochemistry. 37:1998;7929-7940.
    • (1998) Biochemistry , vol.37 , pp. 7929-7940
    • Wang, H.1    Kurochkin, A.V.2    Pang, Y.3    Hu, W.4    Flynn, G.C.5    Zuiderweg, E.R.6
  • 3
    • 0030936995 scopus 로고    scopus 로고
    • Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK.
    • Harrison C.J., Hayer-Hartl M., Di Liberto M, Hartl F., Kuriyan J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science. 276:1997;431-435.
    • (1997) Science , vol.276 , pp. 431-435
    • Harrison, C.J.1    Hayer-Hartl, M.2    Di Liberto, M.3    Hartl, F.4    Kuriyan, J.5
  • 4
    • 0025100372 scopus 로고
    • Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein
    • Flaherty K.M., DeLuca-Flaherty C., McKay D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature. 346:1990;623-628.
    • (1990) Nature , vol.346 , pp. 623-628
    • Flaherty, K.M.1    Deluca-Flaherty, C.2    McKay, D.B.3
  • 5
    • 0031569356 scopus 로고    scopus 로고
    • Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain
    • Sriram M., Osipiuk J., Freeman B.C., Morimoto R.I., Joachimiak A. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure. 5:1997;403-414.
    • (1997) Structure , vol.5 , pp. 403-414
    • Sriram, M.1    Osipiuk, J.2    Freeman, B.C.3    Morimoto, R.I.4    Joachimiak, A.5
  • 6
    • 0031005361 scopus 로고    scopus 로고
    • Crystal structure on an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent
    • Stebbins C.E., Russo A.A., Schneider C., Rosen N., Hartl F.U., Pavletich N.P. Crystal structure on an Hsp90-geldanamycin complex. targeting of a protein chaperone by an antitumor agent Cell. 89:1997;239-250.
    • (1997) Cell , vol.89 , pp. 239-250
    • Stebbins, C.E.1    Russo, A.A.2    Schneider, C.3    Rosen, N.4    Hartl, F.U.5    Pavletich, N.P.6
  • 7
    • 0030901877 scopus 로고    scopus 로고
    • A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone
    • Prodromou C., Roe S.M., Piper P.W., Pearl L.H. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nat Struct Biol. 4:1997;477-482.
    • (1997) Nat Struct Biol , vol.4 , pp. 477-482
    • Prodromou, C.1    Roe, S.M.2    Piper, P.W.3    Pearl, L.H.4
  • 8
    • 0033985080 scopus 로고    scopus 로고
    • GHKL, an emergent ATPase/kinase superfamily
    • Dutta R., Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci. 25:2000;24-28.
    • (2000) Trends Biochem Sci , vol.25 , pp. 24-28
    • Dutta, R.1    Inouye, M.2
  • 9
    • 0030581175 scopus 로고    scopus 로고
    • NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone
    • Pellecchia M., Szyperski T., Wall D., Georgopoulos C., Wuthrich K. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol. 260:1996;236-250.
    • (1996) J Mol Biol , vol.260 , pp. 236-250
    • Pellecchia, M.1    Szyperski, T.2    Wall, D.3    Georgopoulos, C.4    Wuthrich, K.5
  • 10
    • 0032947385 scopus 로고    scopus 로고
    • The influence of C-terminal extension on the structure of the 'J-domain' in E. coli DnaJ
    • Huang K., Flanagan J.M., Prestegard J.H. The influence of C-terminal extension on the structure of the 'J-domain' in E. coli DnaJ. Protein Sci. 8:1999;203-214.
    • (1999) Protein Sci , vol.8 , pp. 203-214
    • Huang, K.1    Flanagan, J.M.2    Prestegard, J.H.3
  • 11
    • 0030581148 scopus 로고    scopus 로고
    • Nuclear magnetic resonance solution structure of the human hsp40 (HDJ-1) J-domain
    • Qian Y.Q., Patel D., Hartl F.U., McColl D.J. Nuclear magnetic resonance solution structure of the human hsp40 (HDJ-1) J-domain. J Mol Biol. 260:1996;224-235.
    • (1996) J Mol Biol , vol.260 , pp. 224-235
    • Qian, Y.Q.1    Patel, D.2    Hartl, F.U.3    McColl, D.J.4
  • 12
    • 0030030946 scopus 로고    scopus 로고
    • A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates
    • Szabo A., Korszun R., Hartl F.U., Flanagan J. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J. 15:1996;408-417.
    • (1996) EMBO J , vol.15 , pp. 408-417
    • Szabo, A.1    Korszun, R.2    Hartl, F.U.3    Flanagan, J.4
  • 13
    • 0033574749 scopus 로고    scopus 로고
    • Interaction of DnaK with native proteins and membrane proteins correlates with their accessible hydrophobicity
    • de Crouy-Chanel A., Kohiyama M., Richarme G. Interaction of DnaK with native proteins and membrane proteins correlates with their accessible hydrophobicity. Gene. 30:1999;163-170.
    • (1999) Gene , vol.30 , pp. 163-170
    • De Crouy-Chanel, A.1    Kohiyama, M.2    Richarme, G.3
  • 14
    • 0032920680 scopus 로고    scopus 로고
    • On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine
    • Blaszczak A., Georgopoulos C., Liberek K. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the DnaK chaperone machine. Mol Microbiol. 1:1999;157-166.
    • (1999) Mol Microbiol , vol.1 , pp. 157-166
    • Blaszczak, A.1    Georgopoulos, C.2    Liberek, K.3
  • 17
    • 0032564380 scopus 로고    scopus 로고
    • Peptide-induced conformational changes in the molecular chaperone DnaK
    • Slepenkov S.V., Witt S.N. Peptide-induced conformational changes in the molecular chaperone DnaK. Biochemistry. 37:1998;16749-16756.
    • (1998) Biochemistry , vol.37 , pp. 16749-16756
    • Slepenkov, S.V.1    Witt, S.N.2
  • 18
    • 0032570283 scopus 로고    scopus 로고
    • Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: Evidence that a three-step reaction precedes ATP hydrolysis
    • Slepenkov S.V., Witt S.N. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis. Biochemistry. 37:1998;1015-1024.
    • (1998) Biochemistry , vol.37 , pp. 1015-1024
    • Slepenkov, S.V.1    Witt, S.N.2
  • 19
    • 0033605086 scopus 로고    scopus 로고
    • Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling
    • A DnaK mutant (K414I) that affects coupling between the ATPase and peptide domains is described. The K414I mutation lies close to the linker region to the ATPase domain. K414I has elevated ATPase activity and reduced peptide-stimulated ATPase activity, ATP-induced changes in tryptophan fluorescence, and ATP-induced peptide release.
    • Montgomery D.L., Morimoto R.I., Gierasch L.M. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J Mol Biol. 286:1999;915-932. A DnaK mutant (K414I) that affects coupling between the ATPase and peptide domains is described. The K414I mutation lies close to the linker region to the ATPase domain. K414I has elevated ATPase activity and reduced peptide-stimulated ATPase activity, ATP-induced changes in tryptophan fluorescence, and ATP-induced peptide release.
    • (1999) J Mol Biol , vol.286 , pp. 915-932
    • Montgomery, D.L.1    Morimoto, R.I.2    Gierasch, L.M.3
  • 20
    • 0032417526 scopus 로고    scopus 로고
    • Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ
    • Allele-specific suppression analysis and biochemical studies show that DnaJ binds to at least two sites on DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. Binding to the ATPase domain involves the J-domain of DnaJ.
    • Suh W.C., Burkholder W.F., Lu C.Z., Zhao X., Gottesman M.E., Gross C.A. Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci USA. 95:1998;15223-15228. Allele-specific suppression analysis and biochemical studies show that DnaJ binds to at least two sites on DnaK: under the ATPase domain in a cleft between its two subdomains and at or near the pocket of substrate binding. Binding to the ATPase domain involves the J-domain of DnaJ.
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 15223-15228
    • Suh, W.C.1    Burkholder, W.F.2    Lu, C.Z.3    Zhao, X.4    Gottesman, M.E.5    Gross, C.A.6
  • 21
    • 0033545978 scopus 로고    scopus 로고
    • Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones
    • At low concentrations, DnaJ efficient stimulation of DnaK ATPase requires a protein substrate of DnaK, indicating a synergistic action of DnaJ and substrate. Peptide substrates were poorly effective, suggesting a mechanism to prevent peptide "jamming" of the substrate domain.
    • Laufen T., Mayer M.P., Beisel C., Klostermeier D., Mogk A., Reinstein J., Bukau B. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci USA. 96:1999;5452-5457. At low concentrations, DnaJ efficient stimulation of DnaK ATPase requires a protein substrate of DnaK, indicating a synergistic action of DnaJ and substrate. Peptide substrates were poorly effective, suggesting a mechanism to prevent peptide "jamming" of the substrate domain.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 5452-5457
    • Laufen, T.1    Mayer, M.P.2    Beisel, C.3    Klostermeier, D.4    Mogk, A.5    Reinstein, J.6    Bukau, B.7
  • 22
    • 0028877015 scopus 로고
    • 2+. Implications for the mechanism of nucleotide exchange
    • 2+. Implications for the mechanism of nucleotide exchange. J Biol Chem. 270:1995;26282-26285.
    • (1995) J Biol Chem , vol.270 , pp. 26282-26285
    • Skowyra, D.1    Wickner, S.2
  • 24
    • 0033214052 scopus 로고    scopus 로고
    • ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli
    • Zolkiewski M. ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system from Escherichia coli. J Biol Chem. 274:1999;28083-28086.
    • (1999) J Biol Chem , vol.274 , pp. 28083-28086
    • Zolkiewski, M.1
  • 25
    • 0033573135 scopus 로고    scopus 로고
    • Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB
    • DnaK prevents aggregation of proteins during denaturation and acts cooperatively with ClpB to solubilize aggregates of denatured proteins.
    • Mogk A., Tomoyasu T., Goloubinoff P., Rudiger S., Roder D., Langen H., Bukau B. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J. 18:1999;6934-6949. DnaK prevents aggregation of proteins during denaturation and acts cooperatively with ClpB to solubilize aggregates of denatured proteins.
    • (1999) EMBO J , vol.18 , pp. 6934-6949
    • Mogk, A.1    Tomoyasu, T.2    Goloubinoff, P.3    Rudiger, S.4    Roder, D.5    Langen, H.6    Bukau, B.7
  • 26
    • 0033598703 scopus 로고    scopus 로고
    • Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network
    • Goloubinoff P., Mogk A., Zvi A.P., Tomoyasu T., Bukau B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci USA. 96:1999;13732-71373.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 13732-71373
    • Goloubinoff, P.1    Mogk, A.2    Zvi, A.P.3    Tomoyasu, T.4    Bukau, B.5
  • 27
    • 0033594880 scopus 로고    scopus 로고
    • Heat-inactivated proteins are rescued by the DnaK. J-GrpE set and ClpB chaperones
    • Motohashi K., Watanabe Y., Yohda M., Yoshida M. Heat-inactivated proteins are rescued by the DnaK. J-GrpE set and ClpB chaperones. Proc Natl Acad Sci USA. 96:1999;7184-7189.
    • (1999) Proc Natl Acad Sci USA , vol.96 , pp. 7184-7189
    • Motohashi, K.1    Watanabe, Y.2    Yohda, M.3    Yoshida, M.4
  • 28
    • 0033549770 scopus 로고    scopus 로고
    • Trigger factor and DnaK cooperate in folding of newly synthesized proteins
    • Deuerling E., Schulze-Specking A., Tomoyasu T., Mogk A., Bukau B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature. 400:1999;693-696.
    • (1999) Nature , vol.400 , pp. 693-696
    • Deuerling, E.1    Schulze-Specking, A.2    Tomoyasu, T.3    Mogk, A.4    Bukau, B.5
  • 29
    • 0033969301 scopus 로고    scopus 로고
    • Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2
    • Caldas T., Laalami S., Richarme G. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem. 275:2000;855-860.
    • (2000) J Biol Chem , vol.275 , pp. 855-860
    • Caldas, T.1    Laalami, S.2    Richarme, G.3
  • 30
    • 0027475243 scopus 로고
    • Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases
    • Nadeau K., Das A., Walsh C.T. Hsp90 chaperonins possess ATPase activity and bind heat shock transcription factors and peptidyl prolyl isomerases. J Biol Chem. 268:1993;1479-1487.
    • (1993) J Biol Chem , vol.268 , pp. 1479-1487
    • Nadeau, K.1    Das, A.2    Walsh, C.T.3
  • 32
    • 0029664944 scopus 로고    scopus 로고
    • The 2.4Å crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S
    • Boisvert D.C., Wang J., Otwinowski Z., Horwich A.L., Sigler P.B. The 2.4Å crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. Nat Sruct Biol. 3:1996;170-177.
    • (1996) Nat Sruct Biol , vol.3 , pp. 170-177
    • Boisvert, D.C.1    Wang, J.2    Otwinowski, Z.3    Horwich, A.L.4    Sigler, P.B.5
  • 33
    • 0030966765 scopus 로고    scopus 로고
    • A structural model for GroEL-polypeptide recognition
    • Buckle A.M., Zahn R., Fersht A.R. A structural model for GroEL-polypeptide recognition. Proc Natl Acad Sci USA. 94:1997;3571-3575.
    • (1997) Proc Natl Acad Sci USA , vol.94 , pp. 3571-3575
    • Buckle, A.M.1    Zahn, R.2    Fersht, A.R.3
  • 34
    • 0033598941 scopus 로고    scopus 로고
    • The crystal structure of a GroEL/peptide complex: Plasticity as a basis for substrate diversity
    • Non-native conformations of diverse protein substrates bind to the apical domains surrounding the opening of the central cavity of the GroEL double toroid. The crystal structures of the complexes formed by a strongly bound peptide with the isolated apical domain, and with GroEL were determined. The peptide interacts with the groove between paired α helices in a manner similar to that of the GroES mobile loop. The tight promiscuous binding of non-native substrates and their release into the shielded cis assembly can be accounted for by various modes of molecular plasticity.
    • Chen L., Sigler P.B. The crystal structure of a GroEL/peptide complex: plasticity as a basis for substrate diversity. Cell. 99:1999;757-768. Non-native conformations of diverse protein substrates bind to the apical domains surrounding the opening of the central cavity of the GroEL double toroid. The crystal structures of the complexes formed by a strongly bound peptide with the isolated apical domain, and with GroEL were determined. The peptide interacts with the groove between paired α helices in a manner similar to that of the GroES mobile loop. The tight promiscuous binding of non-native substrates and their release into the shielded cis assembly can be accounted for by various modes of molecular plasticity.
    • (1999) Cell , vol.99 , pp. 757-768
    • Chen, L.1    Sigler, P.B.2
  • 35
    • 0030067634 scopus 로고    scopus 로고
    • The crystal structure of the GroES co-chaperonin at 2.8Å resolution
    • Hunt J.F., Weaver A.J., Landry S.J., Gierasch L., Deisenhofer J. The crystal structure of the GroES co-chaperonin at 2.8Å resolution. Nature. 379:1996;37-45.
    • (1996) Nature , vol.379 , pp. 37-45
    • Hunt, J.F.1    Weaver, A.J.2    Landry, S.J.3    Gierasch, L.4    Deisenhofer, J.5
  • 36
    • 0030592538 scopus 로고    scopus 로고
    • The chaperonin ATPase cycle: Mechanism of allosteric switching and movements of substrate-binding domains in GroEL
    • Roseman A.M., Chen S., White H., Braig K., Saibil H.R. The chaperonin ATPase cycle. mechanism of allosteric switching and movements of substrate-binding domains in GroEL Cell. 87:1996;241-251.
    • (1996) Cell , vol.87 , pp. 241-251
    • Roseman, A.M.1    Chen, S.2    White, H.3    Braig, K.4    Saibil, H.R.5
  • 37
    • 0030870719 scopus 로고    scopus 로고
    • The crystal structure of the asymmetric GroEL-GroEs-(ADP)7 chaperonin complex
    • Xu Z., Horawich A.L., Sigler P.B. The crystal structure of the asymmetric GroEL-GroEs-(ADP)7 chaperonin complex. Nature. 388:1997;741-750.
    • (1997) Nature , vol.388 , pp. 741-750
    • Xu, Z.1    Horawich, A.L.2    Sigler, P.B.3
  • 38
    • 0033547324 scopus 로고    scopus 로고
    • Identification of in vivo substrates of the chaperonin GroEL
    • GroEL interacts strongly with approximately 300 newly translated polypeptides, some of which are structurally unstable and repeatedly rebind to GroEL. GroEL substrates consist preferentially of two or more domains with αβ-folds, which contain α-helices and buried β-sheets with extensive hydrophobic surfaces.
    • Houry W.A., Frishman D., Eckerskorn C., Lottspeich F., Hartl F.U. Identification of in vivo substrates of the chaperonin GroEL. Nature. 402:1999;147-154. GroEL interacts strongly with approximately 300 newly translated polypeptides, some of which are structurally unstable and repeatedly rebind to GroEL. GroEL substrates consist preferentially of two or more domains with αβ-folds, which contain α-helices and buried β-sheets with extensive hydrophobic surfaces.
    • (1999) Nature , vol.402 , pp. 147-154
    • Houry, W.A.1    Frishman, D.2    Eckerskorn, C.3    Lottspeich, F.4    Hartl, F.U.5
  • 40
    • 0033543656 scopus 로고    scopus 로고
    • GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices
    • GroEL can bind a wide range of structures, from extended β-strands and α-helices to folded states, with exposed side-chains. The binding site can accommodate substrates of approximately 18 residues when in a helical or seven residues when in an extended conformation. In addition to holding folding intermediates via contacts with many motifs, GroEL promotes unfolding by binding an extended sequential conformation of the substrate.
    • Chatellier J., Buckle A.M., Fersht A.R. GroEL recognises sequential and non-sequential linear structural motifs compatible with extended beta-strands and alpha-helices. J Mol Biol. 292:1999;163-172. GroEL can bind a wide range of structures, from extended β-strands and α-helices to folded states, with exposed side-chains. The binding site can accommodate substrates of approximately 18 residues when in a helical or seven residues when in an extended conformation. In addition to holding folding intermediates via contacts with many motifs, GroEL promotes unfolding by binding an extended sequential conformation of the substrate.
    • (1999) J Mol Biol , vol.292 , pp. 163-172
    • Chatellier, J.1    Buckle, A.M.2    Fersht, A.R.3
  • 42
    • 0033617129 scopus 로고    scopus 로고
    • GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings
    • Hydrolysis of ATP within the cis ring of GroEL reorients the apical domains of the trans ring, allowing the binding of non-native polypeptide or GroES to the trans ring. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring. Polypeptide binds first, which stimulates the ATP-dependent dissociation of the cis complex, followed by GroES binding. GroEL alternates its rings as folding-active cis complexes, hydrolysing seven ATPs per folding cycle.
    • Rye H.S., Roseman A.M., Chen S., Furtak K., Fenton W.A., Saibil H.R., Horwich A.L. GroEL-GroES cycling: ATP and nonnative polypeptide direct alternation of folding-active rings. Cell. 97:1999;325-338. Hydrolysis of ATP within the cis ring of GroEL reorients the apical domains of the trans ring, allowing the binding of non-native polypeptide or GroES to the trans ring. Subsequently, formation of a new cis-ternary complex proceeds on the open trans ring. Polypeptide binds first, which stimulates the ATP-dependent dissociation of the cis complex, followed by GroES binding. GroEL alternates its rings as folding-active cis complexes, hydrolysing seven ATPs per folding cycle.
    • (1999) Cell , vol.97 , pp. 325-338
    • Rye, H.S.1    Roseman, A.M.2    Chen, S.3    Furtak, K.4    Fenton, W.A.5    Saibil, H.R.6    Horwich, A.L.7
  • 43
    • 0033597834 scopus 로고    scopus 로고
    • On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES
    • Sakikawa C., Taguchi H., Makino Y., Yoshida M. On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J Biol Chem. 274:1999;21251-21256.
    • (1999) J Biol Chem , vol.274 , pp. 21251-21256
    • Sakikawa, C.1    Taguchi, H.2    Makino, Y.3    Yoshida, M.4
  • 44
    • 0034723362 scopus 로고    scopus 로고
    • GroEL/GroES promote Dissociation/Reassociation cycles of a heterodimeric intermediate during alpha(2)beta(2) protein assembly. Iterative annealing at the quaternary structure level
    • Wynn R.M., Song J.L., Chuang D.T. GroEL/GroES promote Dissociation/Reassociation cycles of a heterodimeric intermediate during alpha(2)beta(2) protein assembly. Iterative annealing at the quaternary structure level. J Biol Chem. 275:2000;2786-2794.
    • (2000) J Biol Chem , vol.275 , pp. 2786-2794
    • Wynn, R.M.1    Song, J.L.2    Chuang, D.T.3
  • 45
    • 0033621330 scopus 로고    scopus 로고
    • Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL
    • Kandror O., Sherman M., Goldberg A. Rapid degradation of an abnormal protein in Escherichia coli proceeds through repeated cycles of association with GroEL. J Biol Chem. 274:1999;37743-37749.
    • (1999) J Biol Chem , vol.274 , pp. 37743-37749
    • Kandror, O.1    Sherman, M.2    Goldberg, A.3
  • 47
    • 0033516473 scopus 로고    scopus 로고
    • Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity
    • Chaperone and protease activities occur concurrently in ClpAP complexes, as seen in a single round of binding of the phage P1 RepA protein to ClpAP and ATP-dependent release.
    • Pak M., Hoskins J.R., Singh S.K., Maurizi M.R., Wickner S. Concurrent chaperone and protease activities of ClpAP and the requirement for the N-terminal ClpA ATP binding site for chaperone activity. J Biol Chem. 274:1999;19316-19322. Chaperone and protease activities occur concurrently in ClpAP complexes, as seen in a single round of binding of the phage P1 RepA protein to ClpAP and ATP-dependent release.
    • (1999) J Biol Chem , vol.274 , pp. 19316-19322
    • Pak, M.1    Hoskins, J.R.2    Singh, S.K.3    Maurizi, M.R.4    Wickner, S.5
  • 48
    • 0033517351 scopus 로고    scopus 로고
    • Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
    • ClpA can unfold stable, native proteins in the presence of ATP. This was demonstrated using a stable monomeric protein, the green fluorescent protein GFP, tagged with an 11-amino-acid carboxy-terminal recognition peptide, which is responsible for recruiting truncated proteins to ClpAP for degradation.
    • Weber-Ban E.U., Reid B.G., Miranker A.D., Horwich A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature. 401:1999;90-93. ClpA can unfold stable, native proteins in the presence of ATP. This was demonstrated using a stable monomeric protein, the green fluorescent protein GFP, tagged with an 11-amino-acid carboxy-terminal recognition peptide, which is responsible for recruiting truncated proteins to ClpAP for degradation.
    • (1999) Nature , vol.401 , pp. 90-93
    • Weber-Ban, E.U.1    Reid, B.G.2    Miranker, A.D.3    Horwich, A.L.4
  • 49
    • 0030691115 scopus 로고    scopus 로고
    • The structure of ClpP at 2.3Å resolution suggests a model for ATP-dependent proteolysis
    • Wang J., Hartling J.A., Flanagan J.M. The structure of ClpP at 2.3Å resolution suggests a model for ATP-dependent proteolysis. Cell. 91:1997;447-456.
    • (1997) Cell , vol.91 , pp. 447-456
    • Wang, J.1    Hartling, J.A.2    Flanagan, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.