메뉴 건너뛰기




Volumn 13, Issue 1, 2000, Pages 79-103

On the near optimality of the stochastic approximation of smooth functions by neural networks

Author keywords

Lower bounds; Neural networks; Stochastic approximation; Upper bounds

Indexed keywords


EID: 0034395382     PISSN: 10197168     EISSN: None     Source Type: Journal    
DOI: 10.1023/A:1018993908478     Document Type: Article
Times cited : (48)

References (31)
  • 1
  • 2
    • 0027599793 scopus 로고
    • Universal approximation bounds for superposition of sigmoidal function
    • A.R. Barron, Universal approximation bounds for superposition of sigmoidal function, IEEE Trans. Inform. Theory 39 (1993) 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 3
    • 0029207175 scopus 로고
    • n) by multilayer feedforward networks and related problems
    • n) by multilayer feedforward networks and related problems, IEEE Trans. Neural Networks 6(1) (1995) 25-30.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.1 , pp. 25-30
    • Chen, T.1    Chen, H.2    Liu, R.3
  • 4
    • 27844503288 scopus 로고    scopus 로고
    • Some limitations of neural networks with one hidden layer
    • C.K. Chui, X. Li and H.N. Mhaskar, Some limitations of neural networks with one hidden layer, Adv. Comput. Math. 5 (1996) 233-244.
    • (1996) Adv. Comput. Math. , vol.5 , pp. 233-244
    • Chui, C.K.1    Li, X.2    Mhaskar, H.N.3
  • 5
    • 0024861871 scopus 로고
    • Approximation by superposition of sigmoidal functions
    • G. Cybenko, Approximation by superposition of sigmoidal functions, Math. Control Signals Systems 2 (1989) 303-314.
    • (1989) Math. Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 10
    • 0000065292 scopus 로고
    • Regularization theory, radial basis functions and networks
    • eds. V. Cherkassy, J.H. Friedman and H. Wechsler Springer
    • F. Girosi, Regularization theory, radial basis functions and networks, in: From Statistics to Neural Networks, eds. V. Cherkassy, J.H. Friedman and H. Wechsler (Springer, 1994) pp. 166-187.
    • (1994) From Statistics to Neural Networks , pp. 166-187
    • Girosi, F.1
  • 14
    • 0031077292 scopus 로고    scopus 로고
    • Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks
    • M. Karpinski and A.J. Macintyre, Polynomial bounds for VC dimension of sigmoidal and general Pfaffian neural networks, J. Comput. System Sci. 54 (1997) 1600-176.
    • (1997) J. Comput. System Sci. , vol.54 , pp. 1600-2176
    • Karpinski, M.1    Macintyre, A.J.2
  • 15
    • 38248999102 scopus 로고
    • Fundamentality of ridge functions
    • V.Ya. Lin and A. Pinkus, Fundamentality of ridge functions, J. Approx. Theory 75 (1993) 295-311.
    • (1993) J. Approx. Theory , vol.75 , pp. 295-311
    • Lin, V.Y.1    Pinkus, A.2
  • 16
    • 0002667327 scopus 로고    scopus 로고
    • On best approximation by ridge functions
    • V. Maiorov, On best approximation by ridge functions, J. Approx. Theory 99 (1999) 68-94.
    • (1999) J. Approx. Theory , vol.99 , pp. 68-94
    • Maiorov, V.1
  • 17
    • 0033239776 scopus 로고    scopus 로고
    • On the degree of approximation using manifolds of finite pseudo-dimension
    • V. Maiorov and J. Ratsaby, On the degree of approximation using manifolds of finite pseudo-dimension, J. Construct. Approx. 15 (1999) 291-300.
    • (1999) J. Construct. Approx. , vol.15 , pp. 291-300
    • Maiorov, V.1    Ratsaby, J.2
  • 18
    • 0032950772 scopus 로고    scopus 로고
    • Lower bounds for approximation by MLP neural networks
    • V. Maiorov and A. Pinkus, Lower bounds for approximation by MLP neural networks, Neurocomputing 25 (1998) 81-91.
    • (1998) Neurocomputing , vol.25 , pp. 81-91
    • Maiorov, V.1    Pinkus, A.2
  • 19
    • 0033732457 scopus 로고    scopus 로고
    • On the optimality of neural network approximation using incremental algorithms
    • Technical Report CC-257, Department of Electrical Engineering, Technion, Israel, October 1998. To appear in
    • R. Meir and V Maiorov, On the optimality of neural network approximation using incremental algorithms, Technical Report CC-257, Department of Electrical Engineering, Technion, Israel, October 1998. To appear in IEEE Trans. Neural Networks (2000).
    • (2000) IEEE Trans. Neural Networks
    • Meir, R.1    Maiorov, V.2
  • 20
    • 0000041417 scopus 로고    scopus 로고
    • Neural networks for optimal approximation of smooth and analytic functions
    • H.N. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions, Neural Comput. 8 (1996) 164-177.
    • (1996) Neural Comput. , vol.8 , pp. 164-177
    • Mhaskar, H.N.1
  • 21
    • 0000358945 scopus 로고
    • Approximation by superposition of a sigmoidal function and radial basis functions
    • H.N. Mhaskar and C.A. Micchelli, Approximation by superposition of a sigmoidal function and radial basis functions, Adv. Appl. Math. 16 (1992) 350-373.
    • (1992) Adv. Appl. Math. , vol.16 , pp. 350-373
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 22
    • 0028424688 scopus 로고
    • Dimension independent bounds on the degree of approximation by neural networks
    • H.N. Mhaskar and C.A. Micchelli, Dimension independent bounds on the degree of approximation by neural networks, IBM J. Res. Develop. 38 (1994) 277-284.
    • (1994) IBM J. Res. Develop. , vol.38 , pp. 277-284
    • Mhaskar, H.N.1    Micchelli, C.A.2
  • 24
    • 0032283665 scopus 로고    scopus 로고
    • Approximation by ridge functions and neural networks
    • P.P. Petrushev, Approximation by ridge functions and neural networks, SIAM J. Math. Anal. 30 (1998) 155-189.
    • (1998) SIAM J. Math. Anal. , vol.30 , pp. 155-189
    • Petrushev, P.P.1
  • 31
    • 84968495010 scopus 로고
    • Lower bounds for approximation by nonlinear manifold
    • H.E. Warren, Lower bounds for approximation by nonlinear manifold, Trans. Amer. Math. Soc. 133 (1968) 167-178.
    • (1968) Trans. Amer. Math. Soc. , vol.133 , pp. 167-178
    • Warren, H.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.