-
1
-
-
0027599793
-
Universal approximation bounds for superposition of a sigmoidal function
-
Barron, A. R. 1993. Universal approximation bounds for superposition of a sigmoidal function. IEEE Trans. Information Theory 39, 930-945.
-
(1993)
IEEE Trans. Information Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
2
-
-
0003073642
-
Statistical learning networks: A unified view
-
April, Reston, Virginia
-
Barron, A. R., and Barron, R. L. 1988. Statistical learning networks: A unified view. In Symposium on the Interface: Statistics and Computing Science, April, Reston, Virginia
-
(1988)
Symposium on the Interface: Statistics and Computing Science
-
-
Barron, A.R.1
Barron, R.L.2
-
3
-
-
0000621802
-
Multivariable functional interpolation and adaptive networks
-
Broomhead, D. S., and Lowe, D. 1988. Multivariable functional interpolation and adaptive networks. Complex Syst. 2, 321-355.
-
(1988)
Complex Syst.
, vol.2
, pp. 321-355
-
-
Broomhead, D.S.1
Lowe, D.2
-
5
-
-
0024861871
-
Approximation by superposition of sigmoidal functions
-
Cybenko, G. 1989. Approximation by superposition of sigmoidal functions. Math. Control, Signal Syst. 2, 303-314.
-
(1989)
Math. Control, Signal Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
6
-
-
0000910028
-
Optimal nonlinear approximation
-
DeVore, R., Howard, R., and Michelli, C. A. 1989. Optimal nonlinear approximation. Manuscript. Math. 63, 469-478.
-
(1989)
Manuscript. Math.
, vol.63
, pp. 469-478
-
-
DeVore, R.1
Howard, R.2
Michelli, C.A.3
-
7
-
-
0001219859
-
Regularization theory and neural networks architectures
-
Girosi, F., Jones, M., and Poggio, T. 1995. Regularization theory and neural networks architectures. Neural Comp. 7, 219-269.
-
(1995)
Neural Comp.
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
8
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2, 359-366.
-
(1989)
Neural Networks
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
9
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno, M., Lin, V., Pinkus, A., and Schocken, S. 1993. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861-867.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.2
Pinkus, A.3
Schocken, S.4
-
10
-
-
0006863682
-
Approximation properties of a multilayered feedforward artificial neural network
-
Mhaskar, H. N. 1993. Approximation properties of a multilayered feedforward artificial neural network. Adv. Comp. Math. 1, 61-80.
-
(1993)
Adv. Comp. Math.
, vol.1
, pp. 61-80
-
-
Mhaskar, H.N.1
-
11
-
-
2342517953
-
Approximation of real functions using neural networks
-
H. P. Dikshit and C. A. Micchelli, eds. World Scientific Press, New Delhi, India
-
Mhaskar, H. N. 1994. Approximation of real functions using neural networks. In Proceedings of International Conference on Computational Mathematics, H. P. Dikshit and C. A. Micchelli, eds. World Scientific Press, New Delhi, India.
-
(1994)
Proceedings of International Conference on Computational Mathematics
-
-
Mhaskar, H.N.1
-
12
-
-
0000358945
-
Approximation by superposition of a sigmoidal function and radial basis functions
-
Mhaskar, H. N., and Micchelli, C. A. 1992. Approximation by superposition of a sigmoidal function and radial basis functions. Adv. Appl. Math. 13, 350-373.
-
(1992)
Adv. Appl. Math.
, vol.13
, pp. 350-373
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
13
-
-
0028424688
-
Dimension independent bounds on the degree of approximation by neural networks
-
Mhaskar, H. N., and Micchelli, C. A. 1994. Dimension independent bounds on the degree of approximation by neural networks. IBM J. Res. Dev. 38, 277-284.
-
(1994)
IBM J. Res. Dev.
, vol.38
, pp. 277-284
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
14
-
-
0000194429
-
Degree of approximation by neural and translation networks with a single hidden layer
-
Mhaskar, H. N., and Micchelli, C. A. 1995. Degree of approximation by neural and translation networks with a single hidden layer. Adv. App. Math. 16, 151-183.
-
(1995)
Adv. App. Math.
, vol.16
, pp. 151-183
-
-
Mhaskar, H.N.1
Micchelli, C.A.2
-
15
-
-
0000672424
-
Fast learning in networks of locally tuned processing units
-
Moody, J., and Darken, C. 1989. Fast learning in networks of locally tuned processing units. Neural Comp. 1(2), 282-294.
-
(1989)
Neural Comp.
, vol.1
, Issue.2
, pp. 282-294
-
-
Moody, J.1
Darken, C.2
-
16
-
-
0000106040
-
Universal approximation using radial basis function networks
-
Park, J. and Sandberg, I. W. 1991. Universal approximation using radial basis function networks. Neural Comp. 3, 246-257.
-
(1991)
Neural Comp.
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.W.2
-
17
-
-
0025490985
-
Networks for approximation and learning
-
Poggio, T., and Girosi, F. 1990. Networks for approximation and learning. Proc. IEEE 78(9).
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
-
-
Poggio, T.1
Girosi, F.2
-
18
-
-
2342652698
-
From regularization to radial, tensor, and additive splines
-
C. A. Kamm, G. M. Kuhn, B. Yoon, R. Chellappa, and S. Y. Kung, eds., IEEE, New York
-
Poggio, T., Girosi, F., and Jones, M. 1993. From regularization to radial, tensor, and additive splines. In Neural Networks for Signal Processing, III, C. A. Kamm, G. M. Kuhn, B. Yoon, R. Chellappa, and S. Y. Kung, eds., pp. 3-10. IEEE, New York.
-
(1993)
Neural Networks for Signal Processing
, vol.3
, pp. 3-10
-
-
Poggio, T.1
Girosi, F.2
Jones, M.3
-
19
-
-
0001739142
-
The theory of radial basis function approximation
-
W. A. Light, ed., Clarendon Press, Oxford
-
Powell, M. J. D. 1992. The theory of radial basis function approximation. In Advances in Numerical Analysis III, Wavelets, Subdivision Algorithms and Radial Basis Functions, W. A. Light, ed., pp. 105-210. Clarendon Press, Oxford.
-
(1992)
Advances in Numerical Analysis III, Wavelets, Subdivision Algorithms and Radial Basis Functions
, pp. 105-210
-
-
Powell, M.J.D.1
-
20
-
-
0040004554
-
On some extremal functions and their applications in the theory of analytic functions of several complex variables
-
Siciak, J. 1962. On some extremal functions and their applications in the theory of analytic functions of several complex variables. Trans. Am. Math. Soc. 105, 322-357.
-
(1962)
Trans. Am. Math. Soc.
, vol.105
, pp. 322-357
-
-
Siciak, J.1
|