-
2
-
-
0003891690
-
-
Cambridge Univ. Press, Cambridge
-
A. L. Panchen, Classification, evolution and the Nature of Biology (Cambridge Univ. Press, Cambridge, 1992); M. T. Ghiselin, Metaphysics and the Origin of Species (State Univ. of New York Press, Albany, NY, 1997).
-
(1992)
Classification, Evolution and the Nature of Biology
-
-
Panchen, A.L.1
-
3
-
-
0004217850
-
-
State Univ. of New York Press, Albany, NY
-
A. L. Panchen, Classification, evolution and the Nature of Biology (Cambridge Univ. Press, Cambridge, 1992); M. T. Ghiselin, Metaphysics and the Origin of Species (State Univ. of New York Press, Albany, NY, 1997).
-
(1997)
Metaphysics and the Origin of Species
-
-
Ghiselin, M.T.1
-
5
-
-
0001895697
-
-
V. Bryson and H. J. Vogel, Eds. Academic Press, New York
-
E. Zuckerkandl and L. Pauling, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel, Eds. (Academic Press, New York, 1965), pp. 97-166; J. Theor. Biol. 8, 357 (1965).
-
(1965)
Evolving Genes and Proteins
, pp. 97-166
-
-
Zuckerkandl, E.1
Pauling, L.2
-
6
-
-
0013776758
-
-
E. Zuckerkandl and L. Pauling, in Evolving Genes and Proteins, V. Bryson and H. J. Vogel, Eds. (Academic Press, New York, 1965), pp. 97-166; J. Theor. Biol. 8, 357 (1965).
-
(1965)
J. Theor. Biol.
, vol.8
, pp. 357
-
-
-
7
-
-
0025300402
-
-
C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci. U.S.A. 87, 4576 (1990); W. F. Doolittle and J. R. Brown, ibid. 91, 6721 (1994); R. F. Doolittle, ibid. 92, 2421 (1995); N. R. Pace, Science 276, 734 (1997).
-
(1990)
Proc. Natl. Acad. Sci. U.S.A.
, vol.87
, pp. 4576
-
-
Woese, C.R.1
Kandler, O.2
Wheelis, M.L.3
-
8
-
-
0028341112
-
-
C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci. U.S.A. 87, 4576 (1990); W. F. Doolittle and J. R. Brown, ibid. 91, 6721 (1994); R. F. Doolittle, ibid. 92, 2421 (1995); N. R. Pace, Science 276, 734 (1997).
-
(1994)
Proc. Natl. Acad. Sci. U.S.A.
, vol.91
, pp. 6721
-
-
Doolittle, W.F.1
Brown, J.R.2
-
9
-
-
0028962795
-
-
C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci. U.S.A. 87, 4576 (1990); W. F. Doolittle and J. R. Brown, ibid. 91, 6721 (1994); R. F. Doolittle, ibid. 92, 2421 (1995); N. R. Pace, Science 276, 734 (1997).
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 2421
-
-
Doolittle, R.F.1
-
10
-
-
0030982247
-
-
C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci. U.S.A. 87, 4576 (1990); W. F. Doolittle and J. R. Brown, ibid. 91, 6721 (1994); R. F. Doolittle, ibid. 92, 2421 (1995); N. R. Pace, Science 276, 734 (1997).
-
(1997)
Science
, vol.276
, pp. 734
-
-
Pace, N.R.1
-
14
-
-
0024722874
-
-
P. J. Gogarten et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989); N. Iwabe, K. Kuma, M. Hasegawa, S. Osawa, T. Miyata, ibid., p. 9355; J. R. Brown and W. F. Doolittle, ibid. 92, 2441 (1995); S. L. Baldauf, J. D. Palmer, W. F. Doolittle, ibid. 93, 7749 (1996); F. S. Lawson, R. L. Charlebois, J. A. Dillon, Mol. Biol. Evol. 13, 970 (1996). Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely, paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs), each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor), such a rooting is not possible with rRNA sequences alone.
-
(1989)
Proc. Natl. Acad. Sci. U.S.A.
, vol.86
, pp. 6661
-
-
Gogarten, P.J.1
-
15
-
-
0024358140
-
-
P. J. Gogarten et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989); N. Iwabe, K. Kuma, M. Hasegawa, S. Osawa, T. Miyata, ibid., p. 9355; J. R. Brown and W. F. Doolittle, ibid. 92, 2441 (1995); S. L. Baldauf, J. D. Palmer, W. F. Doolittle, ibid. 93, 7749 (1996); F. S. Lawson, R. L. Charlebois, J. A. Dillon, Mol. Biol. Evol. 13, 970 (1996). Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely, paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs), each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor), such a rooting is not possible with rRNA sequences alone.
-
Proc. Natl. Acad. Sci. U.S.A.
, pp. 9355
-
-
Iwabe, N.1
Kuma, K.2
Hasegawa, M.3
Osawa, S.4
Miyata, T.5
-
16
-
-
0028941917
-
-
P. J. Gogarten et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989); N. Iwabe, K. Kuma, M. Hasegawa, S. Osawa, T. Miyata, ibid., p. 9355; J. R. Brown and W. F. Doolittle, ibid. 92, 2441 (1995); S. L. Baldauf, J. D. Palmer, W. F. Doolittle, ibid. 93, 7749 (1996); F. S. Lawson, R. L. Charlebois, J. A. Dillon, Mol. Biol. Evol. 13, 970 (1996). Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely, paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs), each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor), such a rooting is not possible with rRNA sequences alone.
-
(1995)
Proc. Natl. Acad. Sci. U.S.A.
, vol.92
, pp. 2441
-
-
Brown, J.R.1
Doolittle, W.F.2
-
17
-
-
0029819318
-
-
P. J. Gogarten et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989); N. Iwabe, K. Kuma, M. Hasegawa, S. Osawa, T. Miyata, ibid., p. 9355; J. R. Brown and W. F. Doolittle, ibid. 92, 2441 (1995); S. L. Baldauf, J. D. Palmer, W. F. Doolittle, ibid. 93, 7749 (1996); F. S. Lawson, R. L. Charlebois, J. A. Dillon, Mol. Biol. Evol. 13, 970 (1996). Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely, paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs), each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor), such a rooting is not possible with rRNA sequences alone.
-
(1996)
Proc. Natl. Acad. Sci. U.S.A.
, vol.93
, pp. 7749
-
-
Baldauf, S.L.1
Palmer, J.D.2
Doolittle, W.F.3
-
18
-
-
0029815789
-
-
P. J. Gogarten et al., Proc. Natl. Acad. Sci. U.S.A. 86, 6661 (1989); N. Iwabe, K. Kuma, M. Hasegawa, S. Osawa, T. Miyata, ibid., p. 9355; J. R. Brown and W. F. Doolittle, ibid. 92, 2441 (1995); S. L. Baldauf, J. D. Palmer, W. F. Doolittle, ibid. 93, 7749 (1996); F. S. Lawson, R. L. Charlebois, J. A. Dillon, Mol. Biol. Evol. 13, 970 (1996). Organisms in all major groups bear genes encoding elongation factors EF-1α (EF-Tu) and EF-2 (bacterial EF-G). These homologous (more precisely, paralogous) genes thus must be products of a gene duplication that had already occurred before the time of the last common ancestor of all organisms alive today. A tree made of EF-1α and EF-2 sequences should comprise two subtrees (one for each of these paralogs), each of which (barring LGT or artifacts) should have the topology of the true universal organismal tree. The point at which each subtree attaches to the other will be its root and will correspond to the last common organismal ancestor. Neither subtree is rootable without the other. Because rRNA genes all seem to be orthologous (derived from a single ancestral gene in the last common ancestor), such a rooting is not possible with rRNA sequences alone.
-
(1996)
Mol. Biol. Evol.
, vol.13
, pp. 970
-
-
Lawson, F.S.1
Charlebois, R.L.2
Dillon, J.A.3
-
19
-
-
0004294273
-
-
Elsevier Science, Amsterdam
-
M. J. Kates, D. J. Kushner, A. T. Matheson, Eds., The Biochemistry of Archaea (Archaeobacteria) (Elsevier Science, Amsterdam, 1993); W. F. Doolittle, in Evolution of Microbial Life, D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. (Cambridge Univ. Press, Cambridge, 1996), pp. 1-21.
-
(1993)
The Biochemistry of Archaea (Archaeobacteria)
-
-
Kates, M.J.1
Kushner, D.J.2
Matheson, A.T.3
-
20
-
-
0002920928
-
-
D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. Cambridge Univ. Press, Cambridge
-
M. J. Kates, D. J. Kushner, A. T. Matheson, Eds., The Biochemistry of Archaea (Archaeobacteria) (Elsevier Science, Amsterdam, 1993); W. F. Doolittle, in Evolution of Microbial Life, D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. (Cambridge Univ. Press, Cambridge, 1996), pp. 1-21.
-
(1996)
Evolution of Microbial Life
, pp. 1-21
-
-
Doolittle, W.F.1
-
21
-
-
0031587820
-
-
G. J. Olsen and C. R. Woese, Cell 89, 991 (1997); D. E. Edgell and W. F. Doolittle, ibid., p. 995; J. N. Reeve, K. Sandman, C. J. Daniels, ibid., p. 999; P. P. Dennis, ibid., p. 1007; J. Soppa, Mol. Microbiol. 31, 1295 (1997).
-
(1997)
Cell
, vol.89
, pp. 991
-
-
Olsen, G.J.1
Woese, C.R.2
-
22
-
-
0031587820
-
-
G. J. Olsen and C. R. Woese, Cell 89, 991 (1997); D. E. Edgell and W. F. Doolittle, ibid., p. 995; J. N. Reeve, K. Sandman, C. J. Daniels, ibid., p. 999; P. P. Dennis, ibid., p. 1007; J. Soppa, Mol. Microbiol. 31, 1295 (1997).
-
Cell
, pp. 995
-
-
Edgell, D.E.1
Doolittle, W.F.2
-
23
-
-
0031587820
-
-
G. J. Olsen and C. R. Woese, Cell 89, 991 (1997); D. E. Edgell and W. F. Doolittle, ibid., p. 995; J. N. Reeve, K. Sandman, C. J. Daniels, ibid., p. 999; P. P. Dennis, ibid., p. 1007; J. Soppa, Mol. Microbiol. 31, 1295 (1997).
-
Cell
, pp. 999
-
-
Reeve, J.N.1
Sandman, K.2
Daniels, C.J.3
-
24
-
-
0031587820
-
-
G. J. Olsen and C. R. Woese, Cell 89, 991 (1997); D. E. Edgell and W. F. Doolittle, ibid., p. 995; J. N. Reeve, K. Sandman, C. J. Daniels, ibid., p. 999; P. P. Dennis, ibid., p. 1007; J. Soppa, Mol. Microbiol. 31, 1295 (1997).
-
Cell
, pp. 1007
-
-
Dennis, P.P.1
-
25
-
-
0033052407
-
-
G. J. Olsen and C. R. Woese, Cell 89, 991 (1997); D. E. Edgell and W. F. Doolittle, ibid., p. 995; J. N. Reeve, K. Sandman, C. J. Daniels, ibid., p. 999; P. P. Dennis, ibid., p. 1007; J. Soppa, Mol. Microbiol. 31, 1295 (1997).
-
(1997)
Mol. Microbiol.
, vol.31
, pp. 1295
-
-
Soppa, J.1
-
26
-
-
0031737821
-
-
H. Philippe, Curr. Opin. Genet. Dev. 8, 616 (1998); H. Phillippe and A. Adoutte, in Evolutionary Relationships Among Protozoa, G. H. Coombs, K. Vickerman, M. A. Sleigh, A. Warren, Eds. (Systematic Association, London, 1998), pp. 25-26; D. Moreira, H. LeGuyader, H. Philippe, Mol. Biol. Evol. 16, 234 (1999).
-
(1998)
Curr. Opin. Genet. Dev.
, vol.8
, pp. 616
-
-
Philippe, H.1
-
27
-
-
0031737821
-
-
G. H. Coombs, K. Vickerman, M. A. Sleigh, A. Warren, Eds. Systematic Association, London
-
H. Philippe, Curr. Opin. Genet. Dev. 8, 616 (1998); H. Phillippe and A. Adoutte, in Evolutionary Relationships Among Protozoa, G. H. Coombs, K. Vickerman, M. A. Sleigh, A. Warren, Eds. (Systematic Association, London, 1998), pp. 25-26; D. Moreira, H. LeGuyader, H. Philippe, Mol. Biol. Evol. 16, 234 (1999).
-
(1998)
Evolutionary Relationships Among Protozoa
, pp. 25-26
-
-
Phillippe, H.1
Adoutte, A.2
-
28
-
-
0033000133
-
-
H. Philippe, Curr. Opin. Genet. Dev. 8, 616 (1998); H. Phillippe and A. Adoutte, in Evolutionary Relationships Among Protozoa, G. H. Coombs, K. Vickerman, M. A. Sleigh, A. Warren, Eds. (Systematic Association, London, 1998), pp. 25-26; D. Moreira, H. LeGuyader, H. Philippe, Mol. Biol. Evol. 16, 234 (1999).
-
(1999)
Mol. Biol. Evol.
, vol.16
, pp. 234
-
-
Moreira, D.1
LeGuyader, H.2
Philippe, H.3
-
29
-
-
84959798530
-
-
Prominent among sources of error or uncertainty in establishing branching patterns are mutational saturation, "long-branch attraction," and "among-site rate variation." Mutationally saturated sequences are maximally diverged, so that further changes are as likely to make them more similar as they are to make them more different, and tree topology is based on noise. Long-branch attraction [J. Felsenstein, Syst. Zool. 27, 401 (1978)] occurs when rates of sequence change differ substantially between taxa (even without saturation). Lineages with higher rates of sequence change artifactually associate with each other and with outgroups, except with maximum likelihood methods. Even with these methods [Z. Yang, J. Mol. Evol. 42, 294 (1996); Trends Ecol. Evol. 11, 367 (1996)], long-branch attraction occurs when there is a substantial rate variation among different sites in a gene.
-
(1978)
Syst. Zool.
, vol.27
, pp. 401
-
-
Felsenstein, J.1
-
30
-
-
0029878719
-
-
Prominent among sources of error or uncertainty in establishing branching patterns are mutational saturation, "long-branch attraction," and "among-site rate variation." Mutationally saturated sequences are maximally diverged, so that further changes are as likely to make them more similar as they are to make them more different, and tree topology is based on noise. Long-branch attraction [J. Felsenstein, Syst. Zool. 27, 401 (1978)] occurs when rates of sequence change differ substantially between taxa (even without saturation). Lineages with higher rates of sequence change artifactually associate with each other and with outgroups, except with maximum likelihood methods. Even with these methods [Z. Yang, J. Mol. Evol. 42, 294 (1996); Trends Ecol. Evol. 11, 367 (1996)], long-branch attraction occurs when there is a substantial rate variation among different sites in a gene.
-
(1996)
J. Mol. Evol.
, vol.42
, pp. 294
-
-
Yang, Z.1
-
31
-
-
0030451420
-
-
Prominent among sources of error or uncertainty in establishing branching patterns are mutational saturation, "long-branch attraction," and "among-site rate variation." Mutationally saturated sequences are maximally diverged, so that further changes are as likely to make them more similar as they are to make them more different, and tree topology is based on noise. Long-branch attraction [J. Felsenstein, Syst. Zool. 27, 401 (1978)] occurs when rates of sequence change differ substantially between taxa (even without saturation). Lineages with higher rates of sequence change artifactually associate with each other and with outgroups, except with maximum likelihood methods. Even with these methods [Z. Yang, J. Mol. Evol. 42, 294 (1996); Trends Ecol. Evol. 11, 367 (1996)], long-branch attraction occurs when there is a substantial rate variation among different sites in a gene.
-
(1996)
Trends Ecol. Evol.
, vol.11
, pp. 367
-
-
-
32
-
-
0033582323
-
-
R. P. Hirt et al., Proc. Natl. Acad. Sci. U.S.A. 96, 580 (1999); J. W. Stiller, E. C. Duffield, B. O. Hall, ibid. 95, 11769 (1998).
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 580
-
-
Hirt, R.P.1
-
33
-
-
0032578482
-
-
R. P. Hirt et al., Proc. Natl. Acad. Sci. U.S.A. 96, 580 (1999); J. W. Stiller, E. C. Duffield, B. O. Hall, ibid. 95, 11769 (1998).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 11769
-
-
Stiller, J.W.1
Duffield, E.C.2
Hall, B.O.3
-
34
-
-
0002375347
-
-
D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. Cambridge Univ. Press, Cambridge
-
P. J. Gogarten, E. Hilario, L. Olenzenski, in Evolution of Microbial Life, D. M. Roberts, P. Sharp, G. Alderson, M. Collins, Eds. (Cambridge Univ. Press, Cambridge, 1996), pp. 267-292.
-
(1996)
Evolution of Microbial Life
, pp. 267-292
-
-
Gogarten, P.J.1
Hilario, E.2
Olenzenski, L.3
-
36
-
-
0023665552
-
-
T. Cavalier-Smith, Nature 326, 332 (1987); Biol. Rev. Camb. Philos. Soc. 73, 203 (1998).
-
(1987)
Nature
, vol.326
, pp. 332
-
-
Cavalier-Smith, T.1
-
37
-
-
0031663016
-
-
T. Cavalier-Smith, Nature 326, 332 (1987); Biol. Rev. Camb. Philos. Soc. 73, 203 (1998).
-
(1998)
Biol. Rev. Camb. Philos. Soc.
, vol.73
, pp. 203
-
-
-
38
-
-
0023150599
-
-
C. R. Vossbrinck et al., Nature 326, 411 (1987); M. L. Sogin, J. H. Gunderson, H. J. Elwood, R. A. Alonso, D. A. Peattie, Science 243, 75 (1989); D. D. Leipe, J. H. Gunderson, T. A. Nerad, M. L. Sogin, Mol. Biochem. Parasitol. 59, 41 (1993).
-
(1987)
Nature
, vol.326
, pp. 411
-
-
Vossbrinck, C.R.1
-
39
-
-
0024962760
-
-
C. R. Vossbrinck et al., Nature 326, 411 (1987); M. L. Sogin, J. H. Gunderson, H. J. Elwood, R. A. Alonso, D. A. Peattie, Science 243, 75 (1989); D. D. Leipe, J. H. Gunderson, T. A. Nerad, M. L. Sogin, Mol. Biochem. Parasitol. 59, 41 (1993).
-
(1989)
Science
, vol.243
, pp. 75
-
-
Sogin, M.L.1
Gunderson, J.H.2
Elwood, H.J.3
Alonso, R.A.4
Peattie, D.A.5
-
40
-
-
0027241047
-
-
C. R. Vossbrinck et al., Nature 326, 411 (1987); M. L. Sogin, J. H. Gunderson, H. J. Elwood, R. A. Alonso, D. A. Peattie, Science 243, 75 (1989); D. D. Leipe, J. H. Gunderson, T. A. Nerad, M. L. Sogin, Mol. Biochem. Parasitol. 59, 41 (1993).
-
(1993)
Mol. Biochem. Parasitol.
, vol.59
, pp. 41
-
-
Leipe, D.D.1
Gunderson, J.H.2
Nerad, T.A.3
Sogin, M.L.4
-
41
-
-
0344396565
-
-
T. M. Embley and R. P. Hirt, Curr. Opin. Genet. Dev. 8, 629 (1998); A. J. Roger, O. Sandblom, W. F. Doolittle, H. Philippe, Mol. Biol. Evol. 16, 218 (1999); P. J. Keeling and G. I. McFadden, Trends Microbiol. 6, 19 (1998).
-
(1998)
Curr. Opin. Genet. Dev.
, vol.8
, pp. 629
-
-
Embley, T.M.1
Hirt, R.P.2
-
42
-
-
0033039592
-
-
T. M. Embley and R. P. Hirt, Curr. Opin. Genet. Dev. 8, 629 (1998); A. J. Roger, O. Sandblom, W. F. Doolittle, H. Philippe, Mol. Biol. Evol. 16, 218 (1999); P. J. Keeling and G. I. McFadden, Trends Microbiol. 6, 19 (1998).
-
(1999)
Mol. Biol. Evol.
, vol.16
, pp. 218
-
-
Roger, A.J.1
Sandblom, O.2
Doolittle, W.F.3
Philippe, H.4
-
43
-
-
0031938847
-
-
T. M. Embley and R. P. Hirt, Curr. Opin. Genet. Dev. 8, 629 (1998); A. J. Roger, O. Sandblom, W. F. Doolittle, H. Philippe, Mol. Biol. Evol. 16, 218 (1999); P. J. Keeling and G. I. McFadden, Trends Microbiol. 6, 19 (1998).
-
(1998)
Trends Microbiol.
, vol.6
, pp. 19
-
-
Keeling, P.J.1
McFadden, G.I.2
-
46
-
-
0031470387
-
-
J. R. Brown and W. F. Doolittle, Microbiol. Mol. Biol. Rev. 61, 456 (1997); D.-F. Feng, G. Cho, R. F. Doolittle, Proc. Natl. Acad. Sci. U.S.A. 94, 13028 (1997); M. Ragan and T. Gaasterland, J. Microb. Comp. Genomics 3, 219 (1998); M. C. Rivera, R. Jain, F. F. Moore, J. A. Lake, Proc. Natl. Acad. Sci. U.S.A. 95, 6239 (1998).
-
(1997)
Microbiol. Mol. Biol. Rev.
, vol.61
, pp. 456
-
-
Brown, J.R.1
Doolittle, W.F.2
-
47
-
-
0030696044
-
-
J. R. Brown and W. F. Doolittle, Microbiol. Mol. Biol. Rev. 61, 456 (1997); D.-F. Feng, G. Cho, R. F. Doolittle, Proc. Natl. Acad. Sci. U.S.A. 94, 13028 (1997); M. Ragan and T. Gaasterland, J. Microb. Comp. Genomics 3, 219 (1998); M. C. Rivera, R. Jain, F. F. Moore, J. A. Lake, Proc. Natl. Acad. Sci. U.S.A. 95, 6239 (1998).
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 13028
-
-
Feng, D.-F.1
Cho, G.2
Doolittle, R.F.3
-
48
-
-
0032235371
-
-
J. R. Brown and W. F. Doolittle, Microbiol. Mol. Biol. Rev. 61, 456 (1997); D.-F. Feng, G. Cho, R. F. Doolittle, Proc. Natl. Acad. Sci. U.S.A. 94, 13028 (1997); M. Ragan and T. Gaasterland, J. Microb. Comp. Genomics 3, 219 (1998); M. C. Rivera, R. Jain, F. F. Moore, J. A. Lake, Proc. Natl. Acad. Sci. U.S.A. 95, 6239 (1998).
-
(1998)
J. Microb. Comp. Genomics
, vol.3
, pp. 219
-
-
Ragan, M.1
Gaasterland, T.2
-
49
-
-
0032568587
-
-
J. R. Brown and W. F. Doolittle, Microbiol. Mol. Biol. Rev. 61, 456 (1997); D.-F. Feng, G. Cho, R. F. Doolittle, Proc. Natl. Acad. Sci. U.S.A. 94, 13028 (1997); M. Ragan and T. Gaasterland, J. Microb. Comp. Genomics 3, 219 (1998); M. C. Rivera, R. Jain, F. F. Moore, J. A. Lake, Proc. Natl. Acad. Sci. U.S.A. 95, 6239 (1998).
-
(1998)
Proc. Natl. Acad. Sci. U.S.A.
, vol.95
, pp. 6239
-
-
Rivera, M.C.1
Jain, R.2
Moore, F.F.3
Lake, J.A.4
-
50
-
-
0032404453
-
-
W. F. Doolittle, Trends Genet. 14, 307 (1998); W. Martin and M. Muller, Nature 392, 37 (1998).
-
(1998)
Trends Genet.
, vol.14
, pp. 307
-
-
Doolittle, W.F.1
-
51
-
-
2642689666
-
-
W. F. Doolittle, Trends Genet. 14, 307 (1998); W. Martin and M. Muller, Nature 392, 37 (1998).
-
(1998)
Nature
, vol.392
, pp. 37
-
-
Martin, W.1
Muller, M.2
-
53
-
-
0031458333
-
-
H.-P. Klenk et al., Nature 390, 364 (1997).
-
(1997)
Nature
, vol.390
, pp. 364
-
-
Klenk, H.-P.1
-
54
-
-
0032510454
-
-
W. F. Doolittle and J. M. Logsdon Jr., Curr. Biol. 8, R209 (1998); M. Ibba, J. L. Bono, P. A. Rosa, D. Soll, Proc. Natl. Acad. Sci. U.S.A. 94, 14383 (1997).
-
(1998)
Curr. Biol.
, vol.8
-
-
Doolittle, W.F.1
Logsdon J.M., Jr.2
-
55
-
-
0031447172
-
-
W. F. Doolittle and J. M. Logsdon Jr., Curr. Biol. 8, R209 (1998); M. Ibba, J. L. Bono, P. A. Rosa, D. Soll, Proc. Natl. Acad. Sci. U.S.A. 94, 14383 (1997).
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 14383
-
-
Ibba, M.1
Bono, J.L.2
Rosa, P.A.3
Soll, D.4
-
58
-
-
0017002184
-
-
S. Sonea and M. Paniset, Rev. Can. Biol. 35, 103 (1976); D. C. Reanney, in Aspects of Genetic Action and Evolution, suppl. 8 of International Review of Cytology, G. H. Bourne, J. F. Danielli, K. W. Jeon, Eds. (Academic Press, New York, 1978), pp. 1-67.
-
(1976)
Rev. Can. Biol.
, vol.35
, pp. 103
-
-
Sonea, S.1
Paniset, M.2
-
59
-
-
0344396562
-
-
G. H. Bourne, J. F. Danielli, K. W. Jeon, Eds. Academic Press, New York
-
S. Sonea and M. Paniset, Rev. Can. Biol. 35, 103 (1976); D. C. Reanney, in Aspects of Genetic Action and Evolution, suppl. 8 of International Review of Cytology, G. H. Bourne, J. F. Danielli, K. W. Jeon, Eds. (Academic Press, New York, 1978), pp. 1-67.
-
(1978)
Aspects of Genetic Action and Evolution, suppl. 8 of International Review of Cytology
, pp. 1-67
-
-
Reanney, D.C.1
-
67
-
-
0033515041
-
-
T. Asai, D. Zaprojets, C. Squires, C. L. Squires, Proc. Natl. Acad. Sci. U.S.A. 96, 1971 (1999).
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 1971
-
-
Asai, T.1
Zaprojets, D.2
Squires, C.3
Squires, C.L.4
-
70
-
-
0032902755
-
-
K. Ueda, Y. Kido, T. Yoshida, M. Kataoka, J. Bacteriol. 181, 78 (1999).
-
(1999)
J. Bacteriol.
, vol.181
, pp. 78
-
-
Ueda, K.1
Kido, Y.2
Yoshida, T.3
Kataoka, M.4
-
74
-
-
0344396560
-
-
note
-
I thank J. Logsdon, A. Roger, D. Faguy, O. Feeley, and Y. Inagaki for critical discussions and the Medical Research Council of Canada and the Canadian Institute for Advanced Research for support. I am indebted to J. P. Gogarten and W. Martin for persuading me of the importance of LGT.
-
-
-
|