-
1
-
-
0041882539
-
-
The carbohydrates on vancomycin have been implicated in biological activity. See, for example: (a) Rodriguez, M. J.; Snyder, N. J.; Zweifel, M. J.; Wilkie, S. C.; Stack, D. R.; Cooper, R. D.; Nicas, T. I.; Mullen, D. L.; Butler, T. F.; Thompson, R. C. J. Antibiot. 1998, 51, 560. (b) Malabarba, A.; Nicas, T. I.; Thompson, R. C. Med. Res. Rev. 1997, 17, 69. (c) Williams, D. H. Nat. Prod. Rep. 1996, 469.
-
(1998)
J. Antibiot.
, vol.51
, pp. 560
-
-
Rodriguez, M.J.1
Snyder, N.J.2
Zweifel, M.J.3
Wilkie, S.C.4
Stack, D.R.5
Cooper, R.D.6
Nicas, T.I.7
Mullen, D.L.8
Butler, T.F.9
Thompson, R.C.10
-
2
-
-
0031023407
-
-
The carbohydrates on vancomycin have been implicated in biological activity. See, for example: (a) Rodriguez, M. J.; Snyder, N. J.; Zweifel, M. J.; Wilkie, S. C.; Stack, D. R.; Cooper, R. D.; Nicas, T. I.; Mullen, D. L.; Butler, T. F.; Thompson, R. C. J. Antibiot. 1998, 51, 560. (b) Malabarba, A.; Nicas, T. I.; Thompson, R. C. Med. Res. Rev. 1997, 17, 69. (c) Williams, D. H. Nat. Prod. Rep. 1996, 469.
-
(1997)
Med. Res. Rev.
, vol.17
, pp. 69
-
-
Malabarba, A.1
Nicas, T.I.2
Thompson, R.C.3
-
3
-
-
0003526192
-
-
The carbohydrates on vancomycin have been implicated in biological activity. See, for example: (a) Rodriguez, M. J.; Snyder, N. J.; Zweifel, M. J.; Wilkie, S. C.; Stack, D. R.; Cooper, R. D.; Nicas, T. I.; Mullen, D. L.; Butler, T. F.; Thompson, R. C. J. Antibiot. 1998, 51, 560. (b) Malabarba, A.; Nicas, T. I.; Thompson, R. C. Med. Res. Rev. 1997, 17, 69. (c) Williams, D. H. Nat. Prod. Rep. 1996, 469.
-
(1996)
Nat. Prod. Rep.
, pp. 469
-
-
Williams, D.H.1
-
4
-
-
0029678259
-
-
(a) Walsh, C. T.; Fisher, S. L.; Park, I.-S.; Prahalad, M.; Wu, Z. Chem. Biol. 1996, 3, 21.
-
(1996)
Chem. Biol.
, vol.3
, pp. 21
-
-
Walsh, C.T.1
Fisher, S.L.2
Park, I.-S.3
Prahalad, M.4
Wu, Z.5
-
5
-
-
0031576683
-
-
For various hypotheses on how carbohydrate derivatives of vancomycin can overcome bacterial resistance, see, for example: (b) Sharman, G. J.; Try, A. C.; Dancer, R. J.; Cho, Y. R.; Staroske, T.; Bardsley, B.; Maguire, A. J.; Cooper, M. A.; O'Brien, D. P.; Williams, D. H. J. Am. Chem. Soc. 1997, 119, 12041.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 12041
-
-
Sharman, G.J.1
Try, A.C.2
Dancer, R.J.3
Cho, Y.R.4
Staroske, T.5
Bardsley, B.6
Maguire, A.J.7
Cooper, M.A.8
O'Brien, D.P.9
Williams, D.H.10
-
6
-
-
0030866228
-
-
(c) Allen, N. E.; Le Tourneau, D. L.; Hobbs, J. N. J. Antibiot. 1997, 50, 677.
-
(1997)
J. Antibiot.
, vol.50
, pp. 677
-
-
Allen, N.E.1
Le Tourneau, D.L.2
Hobbs, J.N.3
-
7
-
-
0026525188
-
-
The vancomycin disaccharide has been synthesized by three different groups but has never been attached to the aglycon: (a) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 3471. (b) Nicolaou, K. C.; Mitchell, H. J.; van Delft, F. L.; Rubsam, F.; Rodriguez, R. M. Angew. Chem. 1998, 110, 1972. (c) Ge, M.; Thompson, C.; Kahne, D. J. Am. Chem. Soc. 1998, 120, 11014.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 3471
-
-
Dushin, R.G.1
Danishefsky, S.J.2
-
8
-
-
0038350267
-
-
The vancomycin disaccharide has been synthesized by three different groups but has never been attached to the aglycon: (a) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 3471. (b) Nicolaou, K. C.; Mitchell, H. J.; van Delft, F. L.; Rubsam, F.; Rodriguez, R. M. Angew. Chem. 1998, 110, 1972. (c) Ge, M.; Thompson, C.; Kahne, D. J. Am. Chem. Soc. 1998, 120, 11014.
-
(1998)
Angew. Chem.
, vol.110
, pp. 1972
-
-
Nicolaou, K.C.1
Mitchell, H.J.2
Van Delft, F.L.3
Rubsam, F.4
Rodriguez, R.M.5
-
9
-
-
0032576124
-
-
The vancomycin disaccharide has been synthesized by three different groups but has never been attached to the aglycon: (a) Dushin, R. G.; Danishefsky, S. J. J. Am. Chem. Soc. 1992, 114, 3471. (b) Nicolaou, K. C.; Mitchell, H. J.; van Delft, F. L.; Rubsam, F.; Rodriguez, R. M. Angew. Chem. 1998, 110, 1972. (c) Ge, M.; Thompson, C.; Kahne, D. J. Am. Chem. Soc. 1998, 120, 11014.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 11014
-
-
Ge, M.1
Thompson, C.2
Kahne, D.3
-
10
-
-
0032538575
-
-
(a) Evans, D. A.; Wood, M. R.; Trotter, B. W.; Richardson, T. I.; Barrow, J. C.; Katz, J. L. Angew. Chem., Int. Ed. 1998, 37, 2700.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 2700
-
-
Evans, D.A.1
Wood, M.R.2
Trotter, B.W.3
Richardson, T.I.4
Barrow, J.C.5
Katz, J.L.6
-
11
-
-
0032538473
-
-
(b) Nicolaou, K. C.; Takayanagi, M.; Jain, N. F.; Natarajan, S.; Koumbis, A. E.; Bando, T.; Ramanjulu, J. M. Angew. Chem. Int. Ed. 1998, 37, 2717.
-
(1998)
Angew. Chem. Int. Ed.
, vol.37
, pp. 2717
-
-
Nicolaou, K.C.1
Takayanagi, M.2
Jain, N.F.3
Natarajan, S.4
Koumbis, A.E.5
Bando, T.6
Ramanjulu, J.M.7
-
12
-
-
0032492672
-
-
For other synthetic efforts toward the vancomycin aglycon, see: (c) Boger, D. L.; Beresis, R. T.; Loiseleur, O.; Wu, J. H.; Castle, S. L. Bioorg. Med. Chem. Lett. 1998, 8, 721.
-
(1998)
Bioorg. Med. Chem. Lett.
, vol.8
, pp. 721
-
-
Boger, D.L.1
Beresis, R.T.2
Loiseleur, O.3
Wu, J.H.4
Castle, S.L.5
-
13
-
-
4243924840
-
-
(d) Rama Rao, R. V.; Gurjar, M. K.; Reddy, K. L.; Rao, A. S. Chem. Rev. 1995, 95, 2135.
-
(1995)
Chem. Rev.
, vol.95
, pp. 2135
-
-
Rama Rao, R.V.1
Gurjar, M.K.2
Reddy, K.L.3
Rao, A.S.4
-
16
-
-
0025861050
-
-
(c) Yoshioka, T.; Aizawa, Y.; Fujita, T.; Nakamura, K.; Sasahara, K.; Kuwano, H.; Kinoshita, T.; Horikoshi, H. Chem. Pharm. Bull. 1991, 39, 2124.
-
(1991)
Chem. Pharm. Bull.
, vol.39
, pp. 2124
-
-
Yoshioka, T.1
Aizawa, Y.2
Fujita, T.3
Nakamura, K.4
Sasahara, K.5
Kuwano, H.6
Kinoshita, T.7
Horikoshi, H.8
-
17
-
-
0000858066
-
-
(a) Conchie, J.; Levvy, G. A.; Marsh, C. A. Adv. Carbohydr. Chem. 1957, 12, 157.
-
(1957)
Adv. Carbohydr. Chem.
, vol.12
, pp. 157
-
-
Conchie, J.1
Levvy, G.A.2
Marsh, C.A.3
-
19
-
-
0344949135
-
-
note
-
Strongly acidic conditions have also been used to form glycosidic linkages to phenols, but yields can be low and stereoselectivity poor; see ref 3c.
-
-
-
-
20
-
-
0020849252
-
-
Harris, C. M.; Kopecka, H.; Harris, T. M. J. Am. Chem. Soc. 1983, 105, 6915.
-
(1983)
J. Am. Chem. Soc.
, vol.105
, pp. 6915
-
-
Harris, C.M.1
Kopecka, H.2
Harris, T.M.3
-
21
-
-
0023676889
-
-
Vancomycin is also sensitive to acidic and oxidative conditions, see: (a) Nagarajan, R.; Schabel, A. A. J. Chem. Soc., Chem. Commun. 1988, 1306. (b) Adamczyk, M.; Grote, J.; Rege, S. Bioorg. Med. Chem. Lett. 1998, 8, 885 and references therein.
-
(1988)
J. Chem. Soc., Chem. Commun.
, pp. 1306
-
-
Nagarajan, R.1
Schabel, A.A.2
-
22
-
-
0032554713
-
-
and references therein
-
Vancomycin is also sensitive to acidic and oxidative conditions, see: (a) Nagarajan, R.; Schabel, A. A. J. Chem. Soc., Chem. Commun. 1988, 1306. (b) Adamczyk, M.; Grote, J.; Rege, S. Bioorg. Med. Chem. Lett. 1998, 8, 885 and references therein.
-
(1998)
Bioorg. Med. Chem. Lett.
, vol.8
, pp. 885
-
-
Adamczyk, M.1
Grote, J.2
Rege, S.3
-
23
-
-
0031105304
-
-
The vancomycin aglycon has been enzymatically glycosylated: Solenberg, P. J.; Matsushima, P.; Stack, D. R.; Wilkie, S. C.; Thompson, R. C.; Baltz, R. H. Chem. Biol. 1997, 4, 195.
-
(1997)
Chem. Biol.
, vol.4
, pp. 195
-
-
Solenberg, P.J.1
Matsushima, P.2
Stack, D.R.3
Wilkie, S.C.4
Thompson, R.C.5
Baltz, R.H.6
-
24
-
-
0016040837
-
-
Wulff, G.; Rohle, G. Angew. Chem., Int. Ed. Engl. 1974, 13, 157.
-
(1974)
Angew. Chem., Int. Ed. Engl.
, vol.13
, pp. 157
-
-
Wulff, G.1
Rohle, G.2
-
25
-
-
5244279498
-
-
For a review on glycosylation methodology, see: Toshima, K.; Tatsuta, K. Chem Rev. 1993, 93, 1503.
-
(1993)
Chem Rev.
, vol.93
, pp. 1503
-
-
Toshima, K.1
Tatsuta, K.2
-
26
-
-
0344949132
-
-
note
-
Danishefsky has developed a good method for making 1,2-trans linkages to phenols that involves nucleophilic attack on a 1,2-epoxy sugar by a potassium phenolate. Glycosylation of a variety of phenols has been demonstrated, but we did not feel that the strong basic conditions would be amenable to vancomycin, see ref 3a. 2,6-Dimethoxyphenol has been glycosylated using a trichloroimidate; the reaction required 24 h at room temperature, see ref 3b.
-
-
-
-
27
-
-
33845185428
-
-
(a) Kahne, D.; Walker, S.; Cheng, Y.; Van Engen, D. J. Am. Chem. Soc. 1989, 111, 6881.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 6881
-
-
Kahne, D.1
Walker, S.2
Cheng, Y.3
Van Engen, D.4
-
28
-
-
0027940051
-
-
(b) Kim, S.-H.; Augeri, D.; Yang, D.; Kahne, D. J. Am. Chem. Soc. 1994, 116, 1766.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 1766
-
-
Kim, S.-H.1
Augeri, D.2
Yang, D.3
Kahne, D.4
-
30
-
-
0026651052
-
-
(d) Berkowitz, D. B.; Danishefsky, S. J.; Schulte, G. K. J. Am. Chem. Soc. 1992, 114, 4518.
-
(1992)
J. Am. Chem. Soc.
, vol.114
, pp. 4518
-
-
Berkowitz, D.B.1
Danishefsky, S.J.2
Schulte, G.K.3
-
32
-
-
0000013034
-
-
(b) Sato, S.; Nunomura, S.; Nakano, T.; Ito, Y.; Ogawa, T. Tetrahedron Lett. 1988, 33, 4097.
-
(1988)
Tetrahedron Lett.
, vol.33
, pp. 4097
-
-
Sato, S.1
Nunomura, S.2
Nakano, T.3
Ito, Y.4
Ogawa, T.5
-
33
-
-
0030662091
-
-
(c) Seeberger, P. H.; Eckhardt, M.; Gutteridge, C. E.; Danishefsky, S. J. J. Am. Chem. Soc. 1997, 119, 10064.
-
(1997)
J. Am. Chem. Soc.
, vol.119
, pp. 10064
-
-
Seeberger, P.H.1
Eckhardt, M.2
Gutteridge, C.E.3
Danishefsky, S.J.4
-
35
-
-
0032554064
-
-
2O both generate anomeric triflates. However, in cases involving neighboring group participation, these glycosylation methods evidently do not react via the same intermediates since they produce different stereochemical outcomes. See: (a) Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435. (b) Crich, D.; Sun, S. Tetrahedron 1998, 54, 8321.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 435
-
-
Crich, D.1
Sun, S.2
-
36
-
-
0032537702
-
-
2O both generate anomeric triflates. However, in cases involving neighboring group participation, these glycosylation methods evidently do not react via the same intermediates since they produce different stereochemical outcomes. See: (a) Crich, D.; Sun, S. J. Am. Chem. Soc. 1998, 120, 435. (b) Crich, D.; Sun, S. Tetrahedron 1998, 54, 8321.
-
(1998)
Tetrahedron
, vol.54
, pp. 8321
-
-
Crich, D.1
Sun, S.2
-
38
-
-
0000647850
-
-
Kusumoto, S.; Sakai, K.; Shiba, T. Bull. Chem. Soc. Jpn. 1986, 59, 1296.
-
(1986)
Bull. Chem. Soc. Jpn.
, vol.59
, pp. 1296
-
-
Kusumoto, S.1
Sakai, K.2
Shiba, T.3
-
39
-
-
0344949126
-
-
note
-
Ten equivalents of thiophenol was used to scavenge the cleaved sugars, which prevents byproduct formation and the loss of protecting groups from the aglycon.
-
-
-
-
40
-
-
0344518303
-
-
note
-
15 could not be completely purified, but the mass (ESI) was consistent with the structure shown.
-
-
-
-
42
-
-
0026574684
-
-
Seneci, P.; Ferrari, P.; Scotti, R.; Ciabatti, R. J. Antibiot. 1992, 45, 1633.
-
(1992)
J. Antibiot.
, vol.45
, pp. 1633
-
-
Seneci, P.1
Ferrari, P.2
Scotti, R.3
Ciabatti, R.4
-
43
-
-
0002714675
-
-
Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
-
(1978)
J. Org. Chem.
, vol.43
, pp. 2923
-
-
Still, W.C.1
Kahn, M.2
Mitra, A.3
-
44
-
-
0000774185
-
-
Liptak, A.; Jodal, I.; Harangi, J.; Nanasi, P. Acta Chim. Hung. 1983, 113, 415.
-
(1983)
Acta Chim. Hung.
, vol.113
, pp. 415
-
-
Liptak, A.1
Jodal, I.2
Harangi, J.3
Nanasi, P.4
-
45
-
-
0344518302
-
-
note
-
The allyl alcohol was included in the reaction in order to preveni the reduction of the allyl protecting groups on vancomycin by diimide, which may be present in hydrazine.
-
-
-
|