메뉴 건너뛰기




Volumn 46, Issue 1, 1998, Pages 115-129

application of the em algorithm for the multitarget/multisensor tracking problem

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ITERATIVE METHODS; MARKOV PROCESSES; MATHEMATICAL MODELS; MOTION PLANNING; OPTIMIZATION; PERFORMANCE;

EID: 0031678885     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/78.651193     Document Type: Article
Times cited : (50)

References (39)
  • 1
    • 0017503505 scopus 로고    scopus 로고
    • Application of 0-1 integer programming to multitarget tracking problems
    • . AC- 22, pp. 302-312, June 1977.
    • C. MorefieldApplication of 0-1 integer programming to multitarget tracking problemsIEEE Trans. Automat. Contr., . AC-22, pp. 302-312, June 1977.
    • IEEE Trans. Automat. Contr.
    • Morefield, C.1
  • 2
    • 0016080966 scopus 로고    scopus 로고
    • Derivation and evaluation of improved tracking filters for use in dense multitarget environments
    • . IT- 20, pp. 423-432, July 1974.
    • R. Singer, R. Sea, and K. HousewrightDerivation and evaluation of improved tracking filters for use in dense multitarget environmentsIEEE Trans. Inform. Theory, . IT-20, pp. 423-432, July 1974.
    • IEEE Trans. Inform. Theory
    • Singer, R.1    Sea, R.2    Housewright, K.3
  • 3
    • 0018689571 scopus 로고    scopus 로고
    • An algorithm for tracking multiple targets
    • . AC- 24, pp. 843-854, Dec. 1979.
    • D. ReidAn algorithm for tracking multiple targetsIEEE Trans. Automat. Contr., . AC-24, pp. 843-854, Dec. 1979.
    • IEEE Trans. Automat. Contr.
    • Reid, D.1
  • 4
    • 0022723742 scopus 로고    scopus 로고
    • Tracking and classifying multiple targets without a priori identification
    • . AC- 31, pp. 401-409, May 1986.
    • S. Mori, C. Chong, E. Tse, and R. WishnerTracking and classifying multiple targets without a priori identification IEEE Trans. Automat. Contr., . AC-31, pp. 401-409, May 1986.
    • IEEE Trans. Automat. Contr.
    • Mori, S.1    Chong, C.2    Tse, E.3    Wishner, R.4
  • 5
    • 0023451098 scopus 로고    scopus 로고
    • Dynamic programming solution for detecting dim moving targets
    • . AES- 21, pp. 144-156, Jan. 1984.
    • Y. BarnivDynamic programming solution for detecting dim moving targetsIEEE Trans. Aerosp. Electron. Syst., . AES-21, pp. 144-156, Jan. 1984.
    • IEEE Trans. Aerosp. Electron. Syst.
    • Barniv, Y.1
  • 6
    • 34250877565 scopus 로고    scopus 로고
    • Finding the best set of K paths through a Trellis with application to multitarget tracking
    • . 25, pp. 287-296, Mar. 1989.
    • J. Wolf, A. Viterbi, and G. DixonFinding the best set of K paths through a Trellis with application to multitarget tracking IEEE Trans. Aerosp. Electron. Syst., . 25, pp. 287-296, Mar. 1989.
    • IEEE Trans. Aerosp. Electron. Syst.
    • Wolf, J.1    Viterbi, A.2    Dixon, G.3
  • 7
    • 0016552254 scopus 로고    scopus 로고
    • Tracking in a cluttered environment with probabilistic data association
    • . 11, pp. 451-460, 1975.
    • Y. Bar-Shalom and E. TseTracking in a cluttered environment with probabilistic data associationAutomatica, . 11, pp. 451-460, 1975.
    • Automatica
    • Bar-Shalom, Y.1    Tse, E.2
  • 8
    • 0020782180 scopus 로고    scopus 로고
    • Sonar tracking of multiple targets using joint probabilistic data association
    • . OE- 8, pp. 173-183, July 1983.
    • T. Fortmann, Y. Bar-Shalom, and M. ScheffeSonar tracking of multiple targets using joint probabilistic data associationIEEE J. Oceanic Eng., . OE-8, pp. 173-183, July 1983.
    • IEEE J. Oceanic Eng.
    • Fortmann, T.1    Bar-Shalom, Y.2    Scheffe, M.3
  • 10
    • 0002629270 scopus 로고    scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • . 39, pp. 1-38, 1977.
    • P. Dempster, N. Laird, and D. RubinMaximum likelihood from incomplete data via the EM algorithmJ. Roy. Stat., . 39, pp. 1-38, 1977.
    • J. Roy. Stat.
    • Dempster, P.1    Laird, N.2    Rubin, D.3
  • 11
    • 0021404166 scopus 로고    scopus 로고
    • Mixture densities, maximum likelihood, and the em algorithm
    • . 26, no. 2, pp. 195-239, Apr. 1984.
    • R. Redner and H. WalkerMixture densities, maximum likelihood, and the EM algorithmSIAM Rev., . 26, no. 2, pp. 195-239, Apr. 1984.
    • SIAM Rev.
    • Redner, R.1    Walker, H.2
  • 12
    • 0000546609 scopus 로고    scopus 로고
    • /-divergence geometry of probability distributions and minimization problems
    • . 3, no. 1, pp. 146-158, 1975.
    • I. Csiszar/-divergence geometry of probability distributions and minimization problemsAnn. Probab., . 3, no. 1, pp. 146-158, 1975.
    • Ann. Probab.
    • Csiszar, I.1
  • 14
    • 0024681039 scopus 로고    scopus 로고
    • A generalized em algorithm for 3-D Baysian reconstruction from Poisson data using Gibbs priors
    • . 8, pp. 194-202, June 1989.
    • T. Hebert and R. LeahyA generalized EM algorithm for 3-D Baysian reconstruction from Poisson data using Gibbs priorsIEEE Trans. Med. Imag., . 8, pp. 194-202, June 1989.
    • IEEE Trans. Med. Imag.
    • Hebert, T.1    Leahy, R.2
  • 15
    • 33747777225 scopus 로고    scopus 로고
    • On use of the em algorithm for penalized likelihood estimation
    • . 52, no. 3, pp. 443-452, 1990.
    • P. GreenOn use of the EM algorithm for penalized likelihood estimationJ. Roy. Stat. B, . 52, no. 3, pp. 443-452, 1990.
    • J. Roy. Stat. B
    • Green, P.1
  • 16
    • 33747786817 scopus 로고    scopus 로고
    • A smoothed em approach to indirect estimation problems, with particular reference to stereology and emission tomography
    • . 52, no. 2, pp. 271-324, 1990.
    • B. Silverman, M. Jones, J. Wilson, and D. NychkaA smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomographyJ. Roy. Stat. B, . 52, no. 2, pp. 271-324, 1990.
    • J. Roy. Stat. B
    • Silverman, B.1    Jones, M.2    Wilson, J.3    Nychka, D.4
  • 17
    • 0020194763 scopus 로고    scopus 로고
    • Maximum likelihood reconstruction for emission tomography
    • . MI- 1, pp. 113-122, Oct. 1982.
    • L. Shepp and Y. VardiMaximum likelihood reconstruction for emission tomographyIEEE Trans. Med. Imag., . MI-1, pp. 113-122, Oct. 1982.
    • IEEE Trans. Med. Imag.
    • Shepp, L.1    Vardi, Y.2
  • 18
    • 0002582140 scopus 로고    scopus 로고
    • Estimation and hypothesis testing in finite mixture models
    • 67-75, 1985.
    • M. Aitkin and D. B. RubinEstimation and hypothesis testing in finite mixture modelsJ. Roy. Stat. Soc. B, pp. 67-75, 1985.
    • J. Roy. Stat. Soc. B, Pp.
    • Aitkin, M.1    Rubin, D.B.2
  • 19
    • 0023383312 scopus 로고    scopus 로고
    • The role of likelihood and entropy in incomplete-data problems: Applications to estimating point-process intensities and Toeplitz constrained covariances
    • . 75, pp. 892-907, July 1987.
    • M. Miller and D. SnyderThe role of likelihood and entropy in incomplete-data problems: Applications to estimating point-process intensities and Toeplitz constrained covariancesProc. IEEE, . 75, pp. 892-907, July 1987.
    • Proc. IEEE
    • Miller, M.1    Snyder, D.2
  • 22
    • 0028466714 scopus 로고    scopus 로고
    • Maximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentation
    • . 3, July 1994.
    • J. Zhang, J. Modestino, and D. LanganMaximum-likelihood parameter estimation for unsupervised stochastic model-based image segmentationIEEE Trans. Image Processing, . 3, July 1994.
    • IEEE Trans. Image Processing
    • Zhang, J.1    Modestino, J.2    Langan, D.3
  • 24
    • 33747793175 scopus 로고    scopus 로고
    • The mean field theory in em procedures for Markov random fields
    • 1991 Int. Symp. Inform. Theory, Budapest, Hungary, June 1991.
    • J. Zhang and J. ModestinoThe mean field theory in EM procedures for Markov random fieldsProc. 1991 Int. Symp. Inform. Theory, Budapest, Hungary, June 1991.
    • Proc.
    • Zhang, J.1    Modestino, J.2
  • 27
    • 0026846001 scopus 로고    scopus 로고
    • A maximum likelihood approach to data association
    • . 28, pp. 560-565, Apr. 1992.
    • D. AvitzourA maximum likelihood approach to data associationIEEE Trans. Aerosp. Electron. Syst., . 28, pp. 560-565, Apr. 1992.
    • IEEE Trans. Aerosp. Electron. Syst.
    • Avitzour, D.1
  • 28
    • 84991640025 scopus 로고    scopus 로고
    • Maximum likelihood method for probabilistic multi-hypothesis tracking
    • . 2235, pp. 394-405, 1994.
    • R. Streit and T. LuginbuhlMaximum likelihood method for probabilistic multi-hypothesis trackingProc. SPIE, . 2235, pp. 394-405, 1994.
    • Proc. SPIE
    • Streit, R.1    Luginbuhl, T.2
  • 29
    • 0028996655 scopus 로고    scopus 로고
    • A comparison of the JPDA and PMHT tracking algorithms
    • 1995 IEEE Conf. Acoust., Speech, Signal Process., Detroit, MI, May 1995, pp. 3571-3574.
    • C. Rago, P. Wille, and R. StreitA comparison of the JPDA and PMHT tracking algorithmsProc. 1995 IEEE Conf. Acoust., Speech, Signal Process., Detroit, MI, May 1995, pp. 3571-3574.
    • Proc.
    • Rago, C.1    Wille, P.2    Streit, R.3
  • 31
    • 0024480435 scopus 로고    scopus 로고
    • Neural solution to the multitarget tracking data association problem
    • . 25, pp. 96-108, Jan. 1989.
    • D. Sengupta and R. A. IltisNeural solution to the multitarget tracking data association problemIEEE Trans. Aerosp. Electron. Syst., . 25, pp. 96-108, Jan. 1989.
    • IEEE Trans. Aerosp. Electron. Syst.
    • Sengupta, D.1    Iltis, R.A.2
  • 32
    • 0004469897 scopus 로고    scopus 로고
    • Neurons with graded responses have collective computational properties like those of two-state neurons
    • 1984, . 81, pp. 3088-3092.
    • J. HopfieldNeurons with graded responses have collective computational properties like those of two-state neuronsProc. Nat. Acad. Sci., May 1984, . 81, pp. 3088-3092.
    • Proc. Nat. Acad. Sci., May
    • Hopfield, J.1
  • 33
    • 0021518209 scopus 로고    scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • . PAMI- 6, pp. 721-741, Nov. 1984.
    • S. Geman and D. GemanStochastic relaxation, Gibbs distributions, and the Bayesian restoration of imagesIEEE Trans. Pattern Anal. Machine Intell, . PAMI-6, pp. 721-741, Nov. 1984.
    • IEEE Trans. Pattern Anal. Machine Intell
    • Geman, S.1    Geman, D.2
  • 35
    • 33747774287 scopus 로고    scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • . 36, pp. 192-226, 1974.
    • J. BesagSpatial interaction and the statistical analysis of lattice systemsJ. Roy. Stat. B, . 36, pp. 192-226, 1974.
    • J. Roy. Stat. B
    • Besag, J.1
  • 37
    • 0027574035 scopus 로고    scopus 로고
    • Multitarget tracking in clutter: Fast algorithms for data association
    • . 29, pp. 352-363, Apr. 1993.
    • B. Zhou and N. BöseMultitarget tracking in clutter: Fast algorithms for data associationIEEE Trans. Aerosp. Electron. Syst., . 29, pp. 352-363, Apr. 1993.
    • IEEE Trans. Aerosp. Electron. Syst.
    • Zhou, B.1    Böse, N.2
  • 38
    • 84975551824 scopus 로고    scopus 로고
    • Fast JPDA multitarget tracking algorithm
    • . 28, pp. 371-376, Jan. 1989.
    • J. Fisher and D. CasasentFast JPDA multitarget tracking algorithmAppl. Opt., . 28, pp. 371-376, Jan. 1989.
    • Appl. Opt.
    • Fisher, J.1    Casasent, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.