-
1
-
-
0019613441
-
Texture discrimination based upon an assumed stochastic texture model
-
Sept.
-
J. W. Modestino, R. W. Fries, and A. L. Vickers, “Texture discrimination based upon an assumed stochastic texture model,” IEEE Trans. Patt. Anal. Machine Intel!., vol. PAMI-3, pp. 557–580, Sept. 1981.
-
(1981)
IEEE Trans. Patt. Anal. Machine Intel
, vol.PAMI-3
, pp. 557-580
-
-
Modestino, J.W.1
Fries, R.W.2
Vickers, A.L.3
-
2
-
-
0021518209
-
Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images
-
Nov.
-
S. Geman and D. Geman, “Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images,” IEEE Trans. Patt. Anal. Machine In tell., vol. PAMI-6, pp. 721–741, Nov. 1984.
-
(1984)
IEEE Trans. Patt. Anal. Machine In tell.
, vol.PAMI-6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
3
-
-
0022695835
-
Statistical model-based algorithms for image analysis
-
Apr.
-
C. W. Therrien, T. F. Quatieri, and D. E. Dudgeon, “Statistical model-based algorithms for image analysis,” Proc. IEEE, vol. 74, Apr. 1986.
-
(1986)
Proc. IEEE
, vol.74
-
-
Therrien, C.W.1
Quatieri, T.F.2
Dudgeon, D.E.3
-
4
-
-
0023123263
-
Modeling and segmentation of noisy and textured images using Gibbs random fields
-
Jan.
-
H. Derin and H. Elliot, “Modeling and segmentation of noisy and textured images using Gibbs random fields,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-9, pp. 39–55, Jan. 1987.
-
(1987)
IEEE Trans. Patt. Anal. Machine Intell.
, vol.PAMI-9
, pp. 39-55
-
-
Derin, H.1
Elliot, H.2
-
5
-
-
0000013152
-
On the statistical analysis of dirty pictures
-
J. Besag, “On the statistical analysis of dirty pictures,” J. Royal Stat. Soc. B., vol. 48, pp. 259–302, 1986.
-
(1986)
J. Royal Stat. Soc. B.
, vol.48
, pp. 259-302
-
-
Besag, J.1
-
6
-
-
2342470234
-
Two-dimensional stochastic model-based image analysis
-
Troy, NY Aug.
-
J. Zhang, “Two-dimensional stochastic model-based image analysis,” Ph.D. Thesis, Rensselaer Polytech. Inst., Troy, NY. Aug. 1988.
-
(1988)
-
-
Zhang, J.1
-
7
-
-
84950881632
-
Computer vision
-
Mar.
-
J. Marroquin, S. Mitter, and T. Poggio, “Computer vision,” J. Amer. Stat. Assoc., vol. 82, pp. 76–89, Mar. 1987.
-
(1987)
J. Amer. Stat. Assoc.
, vol.82
, pp. 76-89
-
-
Marroquin, J.1
Mitter, S.2
Poggio, T.3
-
8
-
-
0023312371
-
Simple, parallel, hierarchical and relaxation algorithms for segmenting non-casual Markovian random field models
-
Mar.
-
F. S. Cohen and D. B. Cooper, “Simple, parallel, hierarchical and relaxation algorithms for segmenting non-casual Markovian random field models,” IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-9, pp. 195–219, Mar. 1987.
-
(1987)
IEEE Trans. Patt. Anal. Machine Intell.
, vol.PAMI-9
, pp. 195-219
-
-
Cohen, F.S.1
Cooper, D.B.2
-
9
-
-
0024053904
-
Bayesian clustering for unsupervised estimation of surface and texture models
-
July
-
J. F. Silverman and D. B. Cooper, “Bayesian clustering for unsupervised estimation of surface and texture models,” IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 482–495, July 1988.
-
(1988)
IEEE Trans. Patt. Anal. Machine Intell.
, vol.10
, pp. 482-495
-
-
Silverman, J.F.1
Cooper, D.B.2
-
10
-
-
0024940699
-
An adaptive clustering algorithm for image segmentation
-
Glasgow May
-
T. N. Pappas and N. S. Jayant, “An adaptive clustering algorithm for image segmentation,” in Proc. ICASSP’89, Glasgow, May 1988, pp. 1667–1670.
-
(1670)
Proc. ICASSP’89
, pp. 1667
-
-
Pappas, T.N.1
Jayant, N.S.2
-
11
-
-
0024089491
-
Adaptive segmentation of speckled images using a hierarchical random field model
-
Oct.
-
P. A. Kelly, H. Derin, and K. D. Hart, “Adaptive segmentation of speckled images using a hierarchical random field model,” IEEE Trans. Acoust. Speech Signal Processing, vol. 36, pp. 1628–1641, Oct. 1988.
-
(1988)
IEEE Trans. Acoust. Speech Signal Processing
, vol.36
, pp. 1628-1641
-
-
Kelly, P.A.1
Derin, H.2
Hart, K.D.3
-
12
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Series
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” J. Roy. Soc. Statist., Series B., no. 1, pp. 1–38, 1977.
-
(1977)
J. Roy. Soc. Statist.
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
13
-
-
0023383312
-
The role of likelihood and entropy in incomplete-data problems: Applications to estimating point-process intensities and Toeplitz constrained covariances
-
July
-
M. I. Miller and D. L. Snyder, “The role of likelihood and entropy in incomplete-data problems: Applications to estimating point-process intensities and Toeplitz constrained covariances,” Proc. IEEE, vol. 75, pp. 892–907, July 1987.
-
(1987)
Proc. IEEE
, vol.75
, pp. 892-907
-
-
Miller, M.I.1
Snyder, D.L.2
-
14
-
-
84930793905
-
Statistical Analysis of Finite Mixture Distributions.
-
New York Wiley
-
D. M. Titterington, A. F. M. Smith, and U. E. Makov, Statistical Analysis of Finite Mixture Distributions. New York: Wiley, 1985.
-
(1985)
-
-
Titterington, D.M.1
Smith, A.F.M.2
Makov, U.E.3
-
15
-
-
0021404166
-
Mixture densities, maximum-likelihood and the EM algorithm
-
R. A. Redner and H. F. Walker, “Mixture densities, maximum-likelihood and the EM algorithm,” SIAM Rev., vol. 26, pp. 195–239, 1984.
-
(1984)
SIAM Rev.
, vol.26
, pp. 195-239
-
-
Redner, R.A.1
Walker, H.F.2
-
16
-
-
0003663467
-
Probability, Random Variables, and Stochastic Processes.
-
New York McGraw-Hill
-
A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1984.
-
(1984)
-
-
Papoulis, A.1
-
17
-
-
84943727594
-
A maximum-likelihood approach to cluster validation
-
Wisconsin-Milwaukee July
-
J. Zhang, “A maximum-likelihood approach to cluster validation,” TR. EE and CS Dept., Univ. of Wisconsin-Milwaukee, July 1989.
-
(1989)
-
-
Zhang, J.1
-
18
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
L. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains,” Ann. Math. Stat., vol. 41, no. 1, pp. 164–171, 1970.
-
(1970)
Ann. Math. Stat.
, vol.41
, Issue.1
, pp. 164-171
-
-
Baum, L.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
19
-
-
0025505758
-
A statistical model-fitting approach to cluster validation with applications to image segmentation
-
Oct.
-
J. Zhang and J. W. Modestino, “A statistical model-fitting approach to cluster validation with applications to image segmentation,” IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp. 1009–1017, Oct. 1990.
-
(1990)
IEEE Trans. Patt. Anal. Machine Intell.
, vol.12
, pp. 1009-1017
-
-
Zhang, J.1
Modestino, J.W.2
-
20
-
-
0003956816
-
Modern Spectral Estimation, Theory and Application.
-
Englewood Cliffs, NJ Prentice Hall
-
S. M. Kay, Modern Spectral Estimation, Theory and Application. Englewood Cliffs, NJ: Prentice Hall, 1988.
-
(1988)
-
-
Kay, S.M.1
-
21
-
-
33646943734
-
Digital Spectral Analysis with Applications.
-
Englewood Cliffs, NJ Prentice Hall
-
S. L. Marple, Jr., Digital Spectral Analysis with Applications. Englewood Cliffs, NJ: Prentice Hall, 1987.
-
(1987)
-
-
Marple, S.L.1
-
24
-
-
0026842556
-
An adaptive clustering algorithm for image segmentation
-
Apr.
-
T. N. Pappas, “An adaptive clustering algorithm for image segmentation,” IEEE Trans. Signal Processing, vol. SP-40, pp. 901–914, Apr. 1992.
-
(1992)
IEEE Trans. Signal Processing
, vol.SP-40
, pp. 901-914
-
-
Pappas, T.N.1
-
25
-
-
84943731407
-
Application of the EM algorithm to unsupervised image segmentation and validation
-
Troy, NY Aug.
-
D. A. Langan, “Application of the EM algorithm to unsupervised image segmentation and validation,” Ph.D. Thesis, ECSE Dept., Rensselaer Polytech. Inst., Troy, NY, Aug. 1993.
-
(1993)
-
-
Langan, D.A.1
-
26
-
-
84943729382
-
The application of information-theoretic criteria to unsupervised stochastic model-based image segmentation
-
Austin, TX Nov.
-
J. Zhang, J. W. Modestino, and D. A. Langan, “The application of information-theoretic criteria to unsupervised stochastic model-based image segmentation,” to appear in Minimum Description Length Applications to Image Processing. (W. Niblack, Ed.) New York: Academic; to be published in Proc. IEEE Int. Conf. Image Processing (ICIP-94), Austin, TX, Nov. 1994.
-
(1994)
to appear in Minimum Description Length Applications to Image Processing.
-
-
Zhang, J.1
Modestino, J.W.2
Langan, D.A.3
-
27
-
-
84997702290
-
Use of the mean-field approximation in an EM-based approach to unsupervised stochastic model-based image segmentation
-
Mar.
-
D. A. Langan, K. S. Molnar, J. W. Modestino, and J. Zhang, “Use of the mean-field approximation in an EM-based approach to unsupervised stochastic model-based image segmentation,” in Proc. IEEE ICASSP’92 (San Francisco, CA), Mar. 1992, pp. 57–60, vol. III.
-
(1992)
Proc. IEEE ICASSP’92
, vol.III
, pp. 57-60
-
-
Langan, D.A.1
Molnar, K.S.2
Modestino, J.W.3
Zhang, J.4
|