메뉴 건너뛰기




Volumn 3, Issue 8, 1997, Pages 1193-1199

Synthetic carbohydrate-containing dendrimers

Author keywords

Carbohydrates; Cluster glycosides; Convergent synthesis; Dendfimers; Divergent synthesis

Indexed keywords


EID: 0030767347     PISSN: 09476539     EISSN: None     Source Type: Journal    
DOI: 10.1002/chem.19970030804     Document Type: Review
Times cited : (153)

References (65)
  • 1
    • 0025373701 scopus 로고
    • For authoritative and comprehensive reviews on dendrimers, see: a) D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175; b) J. Issberner, R. Moors, F. Vögtle, Angew. Chem. Int. Ed. Engl. 1994, 33, 2413-2420; c) J. M. J. Fréchet, Science, 1994, 263, 1710-1715; d) G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendritic Molecules: Concepts, Syntheses, Perspectives, VCH, Weinheim, 1996.
    • (1990) Angew. Chem. Int. Ed. Engl. , vol.29 , pp. 138-175
    • Tomalia, D.A.1    Naylor, A.M.2    Goddard III, W.A.3
  • 2
    • 33748246656 scopus 로고
    • For authoritative and comprehensive reviews on dendrimers, see: a) D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175; b) J. Issberner, R. Moors, F. Vögtle, Angew. Chem. Int. Ed. Engl. 1994, 33, 2413-2420; c) J. M. J. Fréchet, Science, 1994, 263, 1710-1715; d) G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendritic Molecules: Concepts, Syntheses, Perspectives, VCH, Weinheim, 1996.
    • (1994) Angew. Chem. Int. Ed. Engl. , vol.33 , pp. 2413-2420
    • Issberner, J.1    Moors, R.2    Vögtle, F.3
  • 3
    • 0028218595 scopus 로고
    • For authoritative and comprehensive reviews on dendrimers, see: a) D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175; b) J. Issberner, R. Moors, F. Vögtle, Angew. Chem. Int. Ed. Engl. 1994, 33, 2413-2420; c) J. M. J. Fréchet, Science, 1994, 263, 1710-1715; d) G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendritic Molecules: Concepts, Syntheses, Perspectives, VCH, Weinheim, 1996.
    • (1994) Science , vol.263 , pp. 1710-1715
    • Fréchet, J.M.J.1
  • 4
    • 0003518691 scopus 로고    scopus 로고
    • VCH, Weinheim
    • For authoritative and comprehensive reviews on dendrimers, see: a) D. A. Tomalia, A. M. Naylor, W. A. Goddard III, Angew. Chem. Int. Ed. Engl. 1990, 29, 138-175; b) J. Issberner, R. Moors, F. Vögtle, Angew. Chem. Int. Ed. Engl. 1994, 33, 2413-2420; c) J. M. J. Fréchet, Science, 1994, 263, 1710-1715; d) G. R. Newkome, C. N. Moorefield, F. Vögtle, Dendritic Molecules: Concepts, Syntheses, Perspectives, VCH, Weinheim, 1996.
    • (1996) Dendritic Molecules: Concepts, Syntheses, Perspectives
    • Newkome, G.R.1    Moorefield, C.N.2    Vögtle, F.3
  • 6
    • 0001094662 scopus 로고    scopus 로고
    • The rapidly growing interest in carbohydrate-protein interactions has led to the evolution of glycobiology as a field of intense scientific inquiry. For an excellent review, see: R. Dwek, Chem. Rev. 1996, 96, 683-720.
    • (1996) Chem. Rev. , vol.96 , pp. 683-720
    • Dwek, R.1
  • 10
    • 0018886932 scopus 로고
    • The majority of the research performed in this area is directed toward creating synthetic analogues of natural glycoconjugates - the so-called neoglycoconjusates. These compounds provide an insight into the biological functions of saccharides and are an indispensable aid to understanding many aspects of glycobiology. For leading references, see: a) C. P. Stowell, Y. C. Lee, Adv. Carbohydr. Chem. Biochem. 1980, 37, 225-281; b) Neoglycoconjugates: Preparation and Applications (Eds.: Y. C. Lee, R. T. Lee). Academic Press, San Diego, 1994; c) Methods in Enzymology, Vol. 242, Neoglycoconjugates, Part A, Synthesis (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994; d) Methods in Enzymology, Vol. 247, Neoglycoconjugates, Part B, Biomedical Applications (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994.
    • (1980) Adv. Carbohydr. Chem. Biochem. , vol.37 , pp. 225-281
    • Stowell, C.P.1    Lee, Y.C.2
  • 11
    • 0018886932 scopus 로고
    • Academic Press, San Diego
    • The majority of the research performed in this area is directed toward creating synthetic analogues of natural glycoconjugates - the so-called neoglycoconjusates. These compounds provide an insight into the biological functions of saccharides and are an indispensable aid to understanding many aspects of glycobiology. For leading references, see: a) C. P. Stowell, Y. C. Lee, Adv. Carbohydr. Chem. Biochem. 1980, 37, 225-281; b) Neoglycoconjugates: Preparation and Applications (Eds.: Y. C. Lee, R. T. Lee). Academic Press, San Diego, 1994; c) Methods in Enzymology, Vol. 242, Neoglycoconjugates, Part A, Synthesis (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994; d) Methods in Enzymology, Vol. 247, Neoglycoconjugates, Part B, Biomedical Applications (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994.
    • (1994) Neoglycoconjugates: Preparation and Applications
    • Lee, Y.C.1    Lee, R.T.2
  • 12
    • 0018886932 scopus 로고
    • Academic Press, San Diego
    • The majority of the research performed in this area is directed toward creating synthetic analogues of natural glycoconjugates - the so-called neoglycoconjusates. These compounds provide an insight into the biological functions of saccharides and are an indispensable aid to understanding many aspects of glycobiology. For leading references, see: a) C. P. Stowell, Y. C. Lee, Adv. Carbohydr. Chem. Biochem. 1980, 37, 225-281; b) Neoglycoconjugates: Preparation and Applications (Eds.: Y. C. Lee, R. T. Lee). Academic Press, San Diego, 1994; c) Methods in Enzymology, Vol. 242, Neoglycoconjugates, Part A, Synthesis (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994; d) Methods in Enzymology, Vol. 247, Neoglycoconjugates, Part B, Biomedical Applications (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994.
    • (1994) Methods in Enzymology, Vol. 242, Neoglycoconjugates, Part A, Synthesis , vol.242
    • Lee, Y.C.1    Lee, R.T.2
  • 13
    • 0018886932 scopus 로고
    • Academic Press, San Diego
    • The majority of the research performed in this area is directed toward creating synthetic analogues of natural glycoconjugates - the so-called neoglycoconjusates. These compounds provide an insight into the biological functions of saccharides and are an indispensable aid to understanding many aspects of glycobiology. For leading references, see: a) C. P. Stowell, Y. C. Lee, Adv. Carbohydr. Chem. Biochem. 1980, 37, 225-281; b) Neoglycoconjugates: Preparation and Applications (Eds.: Y. C. Lee, R. T. Lee). Academic Press, San Diego, 1994; c) Methods in Enzymology, Vol. 242, Neoglycoconjugates, Part A, Synthesis (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994; d) Methods in Enzymology, Vol. 247, Neoglycoconjugates, Part B, Biomedical Applications (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994.
    • (1994) Methods in Enzymology, Vol. 247, Neoglycoconjugates, Part B, Biomedical Applications , vol.247
    • Lee, Y.C.1    Lee, R.T.2
  • 14
    • 15444381044 scopus 로고    scopus 로고
    • The term glycodendrimers has also been suggested by Roy for this class of compounds: in practice, it is used for dendrimers, dendrons, and even compounds consisting of relatively small multi-antennary molecules. An article entitled Glycodendrimere has recently been published in German; see: TK Lindhorst, Nachr. Chem. Tech. Lab. 1996, 44, 1073-1079.
    • (1996) Nachr. Chem. Tech. Lab. , vol.44 , pp. 1073-1079
    • Lindhorst, T.K.1
  • 18
    • 0002490637 scopus 로고
    • (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego
    • Glycopeptides are usually assembled from glycosylated amino acids, rather than by the glycosylation of pre-formed peptides. See: a) M. Meldal, in Neoglycoconjugates: Preparation and Applications (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994, pp. 145-198; b) H. Paulsen, S. Peters, T. Bielfieldt in New Comprehensive Biochemistry, Vol. 29, Glycoproteins (Eds.: J. Montreuil, J. F. G. Vliegenthart, H. Schachter), Elsevier, Amsterdam, 1995, pp. 87-121.
    • (1994) Neoglycoconjugates: Preparation and Applications , pp. 145-198
    • Meldal, M.1
  • 19
    • 0342887832 scopus 로고
    • (Eds.: J. Montreuil, J. F. G. Vliegenthart, H. Schachter), Elsevier, Amsterdam
    • Glycopeptides are usually assembled from glycosylated amino acids, rather than by the glycosylation of pre-formed peptides. See: a) M. Meldal, in Neoglycoconjugates: Preparation and Applications (Eds.: Y. C. Lee and R. T. Lee), Academic Press, San Diego, 1994, pp. 145-198; b) H. Paulsen, S. Peters, T. Bielfieldt in New Comprehensive Biochemistry, Vol. 29, Glycoproteins (Eds.: J. Montreuil, J. F. G. Vliegenthart, H. Schachter), Elsevier, Amsterdam, 1995, pp. 87-121.
    • (1995) New Comprehensive Biochemistry, Vol. 29, Glycoproteins , vol.29 , pp. 87-121
    • Paulsen, H.1    Peters, S.2    Bielfieldt, T.3
  • 22
    • 85036494226 scopus 로고    scopus 로고
    • note
    • Most of the synthetic techniques rely upon covalent bond formation between spacer-armed saccharides and functional groups on the polymer carriers. For more details, consult ref. [5].
  • 29
    • 33748232917 scopus 로고    scopus 로고
    • For a selection of some recent papers, see: a) U. Sprengard, M. Schudok, W. Schmidt, G. Kretzschmer, H. Kunz, Angew. Chem. Int. Ed. Engl. 1996, 35, 321-324; b) S. A. DeFrees, W. Kosch, W. Way, J. C. Paulson, S. Sabesan, R. L. Halcomb, D.-H. Huang, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 66-79; c) E. R. Wijsman, D. Filippov, A. R. P. M. Valentijn, G. A. van der Marel, J. H. van Boom, Rec. Trav. Chim. Pays-Bas 1996, 115, 397-401; d) A. Kichler, F. Schuber, Glycoconj. J. 1995, 12, 275-281; e) J. Lehman, U. P. Weitzel, Carbohydr. Res. 1996, 294, 65-94; f) A. R. P. M. Valentijn, G. A. van der Marel, L. A. J. M. Sliedregt, T. J. C. van Berkel, E. A. L. Biessen, J. H. van Boom, Tetrahedron 1997, 53, 759-770.
    • (1996) Angew. Chem. Int. Ed. Engl. , vol.35 , pp. 321-324
    • Sprengard, U.1    Schudok, M.2    Schmidt, W.3    Kretzschmer, G.4    Kunz, H.5
  • 30
    • 0028895061 scopus 로고
    • For a selection of some recent papers, see: a) U. Sprengard, M. Schudok, W. Schmidt, G. Kretzschmer, H. Kunz, Angew. Chem. Int. Ed. Engl. 1996, 35, 321-324; b) S. A. DeFrees, W. Kosch, W. Way, J. C. Paulson, S. Sabesan, R. L. Halcomb, D.-H. Huang, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 66-79; c) E. R. Wijsman, D. Filippov, A. R. P. M. Valentijn, G. A. van der Marel, J. H. van Boom, Rec. Trav. Chim. Pays-Bas 1996, 115, 397-401; d) A. Kichler, F. Schuber, Glycoconj. J. 1995, 12, 275-281; e) J. Lehman, U. P. Weitzel, Carbohydr. Res. 1996, 294, 65-94; f) A. R. P. M. Valentijn, G. A. van der Marel, L. A. J. M. Sliedregt, T. J. C. van Berkel, E. A. L. Biessen, J. H. van Boom, Tetrahedron 1997, 53, 759-770.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 66-79
    • DeFrees, S.A.1    Kosch, W.2    Way, W.3    Paulson, J.C.4    Sabesan, S.5    Halcomb, R.L.6    Huang, D.-H.7    Ichikawa, Y.8    Wong, C.-H.9
  • 31
    • 0342578180 scopus 로고    scopus 로고
    • For a selection of some recent papers, see: a) U. Sprengard, M. Schudok, W. Schmidt, G. Kretzschmer, H. Kunz, Angew. Chem. Int. Ed. Engl. 1996, 35, 321-324; b) S. A. DeFrees, W. Kosch, W. Way, J. C. Paulson, S. Sabesan, R. L. Halcomb, D.-H. Huang, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 66-79; c) E. R. Wijsman, D. Filippov, A. R. P. M. Valentijn, G. A. van der Marel, J. H. van Boom, Rec. Trav. Chim. Pays-Bas 1996, 115, 397-401; d) A. Kichler, F. Schuber, Glycoconj. J. 1995, 12, 275-281; e) J. Lehman, U. P. Weitzel, Carbohydr. Res. 1996, 294, 65-94; f) A. R. P. M. Valentijn, G. A. van der Marel, L. A. J. M. Sliedregt, T. J. C. van Berkel, E. A. L. Biessen, J. H. van Boom, Tetrahedron 1997, 53, 759-770.
    • (1996) Rec. Trav. Chim. Pays-Bas , vol.115 , pp. 397-401
    • Wijsman, E.R.1    Filippov, D.2    Valentijn, A.R.P.M.3    Van Der Marel, G.A.4    Van Boom, J.H.5
  • 32
    • 0029012523 scopus 로고
    • For a selection of some recent papers, see: a) U. Sprengard, M. Schudok, W. Schmidt, G. Kretzschmer, H. Kunz, Angew. Chem. Int. Ed. Engl. 1996, 35, 321-324; b) S. A. DeFrees, W. Kosch, W. Way, J. C. Paulson, S. Sabesan, R. L. Halcomb, D.-H. Huang, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 66-79; c) E. R. Wijsman, D. Filippov, A. R. P. M. Valentijn, G. A. van der Marel, J. H. van Boom, Rec. Trav. Chim. Pays-Bas 1996, 115, 397-401; d) A. Kichler, F. Schuber, Glycoconj. J. 1995, 12, 275-281; e) J. Lehman, U. P. Weitzel, Carbohydr. Res. 1996, 294, 65-94; f) A. R. P. M. Valentijn, G. A. van der Marel, L. A. J. M. Sliedregt, T. J. C. van Berkel, E. A. L. Biessen, J. H. van Boom, Tetrahedron 1997, 53, 759-770.
    • (1995) Glycoconj. J. , vol.12 , pp. 275-281
    • Kichler, A.1    Schuber, F.2
  • 33
    • 0029860024 scopus 로고    scopus 로고
    • For a selection of some recent papers, see: a) U. Sprengard, M. Schudok, W. Schmidt, G. Kretzschmer, H. Kunz, Angew. Chem. Int. Ed. Engl. 1996, 35, 321-324; b) S. A. DeFrees, W. Kosch, W. Way, J. C. Paulson, S. Sabesan, R. L. Halcomb, D.-H. Huang, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 66-79; c) E. R. Wijsman, D. Filippov, A. R. P. M. Valentijn, G. A. van der Marel, J. H. van Boom, Rec. Trav. Chim. Pays-Bas 1996, 115, 397-401; d) A. Kichler, F. Schuber, Glycoconj. J. 1995, 12, 275-281; e) J. Lehman, U. P. Weitzel, Carbohydr. Res. 1996, 294, 65-94; f) A. R. P. M. Valentijn, G. A. van der Marel, L. A. J. M. Sliedregt, T. J. C. van Berkel, E. A. L. Biessen, J. H. van Boom, Tetrahedron 1997, 53, 759-770.
    • (1996) Carbohydr. Res. , vol.294 , pp. 65-94
    • Lehman, J.1    Weitzel, U.P.2
  • 34
    • 0031021769 scopus 로고    scopus 로고
    • For a selection of some recent papers, see: a) U. Sprengard, M. Schudok, W. Schmidt, G. Kretzschmer, H. Kunz, Angew. Chem. Int. Ed. Engl. 1996, 35, 321-324; b) S. A. DeFrees, W. Kosch, W. Way, J. C. Paulson, S. Sabesan, R. L. Halcomb, D.-H. Huang, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 66-79; c) E. R. Wijsman, D. Filippov, A. R. P. M. Valentijn, G. A. van der Marel, J. H. van Boom, Rec. Trav. Chim. Pays-Bas 1996, 115, 397-401; d) A. Kichler, F. Schuber, Glycoconj. J. 1995, 12, 275-281; e) J. Lehman, U. P. Weitzel, Carbohydr. Res. 1996, 294, 65-94; f) A. R. P. M. Valentijn, G. A. van der Marel, L. A. J. M. Sliedregt, T. J. C. van Berkel, E. A. L. Biessen, J. H. van Boom, Tetrahedron 1997, 53, 759-770.
    • (1997) Tetrahedron , vol.53 , pp. 759-770
    • Valentijn, A.R.P.M.1    Van Der Marel, G.A.2    Sliedregt, L.A.J.M.3    Van Berkel, T.J.C.4    Biessen, E.A.L.5    Van Boom, J.H.6
  • 35
    • 0003159641 scopus 로고
    • (Eds.: H.-J. Gabius and S. Gabius), Springer, Heidelberg
    • R. T. Lee, Y. C. Lee, in Lectins and Glycobiology (Eds.: H.-J. Gabius and S. Gabius), Springer, Heidelberg, 1993, pp. 9-22.
    • (1993) Lectins and Glycobiology , pp. 9-22
    • Lee, R.T.1    Lee, Y.C.2
  • 39
    • 0001420002 scopus 로고    scopus 로고
    • R. Roy, Polymer News 1996, 21, 226-232.
    • (1996) Polymer News , vol.21 , pp. 226-232
    • Roy, R.1
  • 42
    • 0027052956 scopus 로고
    • Sialic acid is one of the most important carbohydrate epitopes implicated in many biological processes. For instance, it is a potential anti-inflammatory agent since it acts as an inhibitor of hemagglutination of human erythrocytes by influenza viruses. Having the advantage of well-defined chemical structures and presumably lacking the immunogenisity caused by the non-carbohydrate parts of more conventional macromolecules, glycodendrimers seem to be very attractive candidates for drugs in comparison with multivalent inhibitors based on synthetic polymers or natural proteins, which have been studied previously. See: a) R. Roy, F. O. Andersson, G. Harms, S. Kelm, R. Schauer, Angew. Chem. Int. Ed. Engl. 1992, 31, 1478-1481; b) N. E. Byramova, L. V. Mochalova, I. M. Belyanchikov, M. N. Matrosovich, N. V. Bovin, J. Carhohydr. Chem. 1991, 10, 691-700; c) G. B. Sigal, M. Mammen, G. Dahmann, G. M. Whitesides, J. Am. Chem. Soc. 1996, 118, 1789-3800.
    • (1992) Angew. Chem. Int. Ed. Engl. , vol.31 , pp. 1478-1481
    • Roy, R.1    Andersson, F.O.2    Harms, G.3    Kelm, S.4    Schauer, R.5
  • 43
    • 0011288625 scopus 로고
    • Sialic acid is one of the most important carbohydrate epitopes implicated in many biological processes. For instance, it is a potential anti-inflammatory agent since it acts as an inhibitor of hemagglutination of human erythrocytes by influenza viruses. Having the advantage of well-defined chemical structures and presumably lacking the immunogenisity caused by the non-carbohydrate parts of more conventional macromolecules, glycodendrimers seem to be very attractive candidates for drugs in comparison with multivalent inhibitors based on synthetic polymers or natural proteins, which have been studied previously. See: a) R. Roy, F. O. Andersson, G. Harms, S. Kelm, R. Schauer, Angew. Chem. Int. Ed. Engl. 1992, 31, 1478-1481; b) N. E. Byramova, L. V. Mochalova, I. M. Belyanchikov, M. N. Matrosovich, N. V. Bovin, J. Carhohydr. Chem. 1991, 10, 691-700; c) G. B. Sigal, M. Mammen, G. Dahmann, G. M. Whitesides, J. Am. Chem. Soc. 1996, 118, 1789-3800.
    • (1991) J. Carhohydr. Chem. , vol.10 , pp. 691-700
    • Byramova, N.E.1    Mochalova, L.V.2    Belyanchikov, I.M.3    Matrosovich, M.N.4    Bovin, N.V.5
  • 44
    • 0029994114 scopus 로고    scopus 로고
    • Sialic acid is one of the most important carbohydrate epitopes implicated in many biological processes. For instance, it is a potential anti-inflammatory agent since it acts as an inhibitor of hemagglutination of human erythrocytes by influenza viruses. Having the advantage of well-defined chemical structures and presumably lacking the immunogenisity caused by the non-carbohydrate parts of more conventional macromolecules, glycodendrimers seem to be very attractive candidates for drugs in comparison with multivalent inhibitors based on synthetic polymers or natural proteins, which have been studied previously. See: a) R. Roy, F. O. Andersson, G. Harms, S. Kelm, R. Schauer, Angew. Chem. Int. Ed. Engl. 1992, 31, 1478-1481; b) N. E. Byramova, L. V. Mochalova, I. M. Belyanchikov, M. N. Matrosovich, N. V. Bovin, J. Carhohydr. Chem. 1991, 10, 691-700; c) G. B. Sigal, M. Mammen, G. Dahmann, G. M. Whitesides, J. Am. Chem. Soc. 1996, 118, 1789-3800.
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 1789-3800
    • Sigal, G.B.1    Mammen, M.2    Dahmann, G.3    Whitesides, G.M.4
  • 47
    • 85036492970 scopus 로고    scopus 로고
    • note
    • Apart from octavalent dendron 14, homologous dendritic compounds containing 2, 4, and 16 branches have also been used successfully for the attachment of saccharide residues. For more information, see refs. [22] and [24].
  • 52
    • 0003461218 scopus 로고    scopus 로고
    • Elsevier, Oxford
    • The binding properties of cyclodextrins result from the relatively rigid hydrophobic cavities associated with their cyclic structures. The current state of cvclodextrin chemistry is described in detail in: Comprehensive Supramoleculur Chemistry ; Vol. 3. Cyclodextrins (Eds.: J. Szejtli, T. Osa), Elsevier, Oxford, 1996.
    • (1996) Comprehensive Supramoleculur Chemistry ; Vol. 3. Cyclodextrins , vol.3
    • Szejtli, J.1    Osa, T.2
  • 55
    • 85036484007 scopus 로고    scopus 로고
    • M. Sc. Thesis, University of Birmingham
    • B. Colonna, M. Sc. Thesis, University of Birmingham, 1996.
    • (1996)
    • Colonna, B.1
  • 59
    • 85036481718 scopus 로고    scopus 로고
    • note
    • X glycomimetics have been developed as suitable inhibitors for the selectin family of adhesion molecules, which are implicated in mediating the attachment of leukocytes at sites of tissue injury and inflammation. See ref. [19a,b];
  • 60
    • 33751386413 scopus 로고
    • June 28
    • b) For an article on the evolution of carbohydrate drugs, see: S. Borman, Chem. Eng. News 1993, June 28, pp. 27-34.
    • (1993) Chem. Eng. News , pp. 27-34
    • Borman, S.1
  • 63
    • 85036486715 scopus 로고    scopus 로고
    • note
    • x (x = 4, 8, 16, 32, 64, ...) = poly(propylene imine) dendrimers; PAMAM dendrimers = poly(amido amine) dendrimers.
  • 64
    • 0030915343 scopus 로고    scopus 로고
    • Note added in proof: The feasibility of using unprotected carbohydrates in dendrimer syntheses has been established very recently. Kieburg and Lindhorst have demonstrated that unprotected carbohydrates, tethered with isothiocyanate functional groups, can readily form thiourea bridges with amine-terminated PAMAM dendrimers (C. Kieburg, T. K. Lindhorst, Tetrahedron Lett. 1997, 38, 3885-3888). In a convergent synthetic approach, we have synthesized some lower-generation carbohydrate-containing dendrimers using unprotected carbohydrates (N. Jayaraman, J. F. Stoddart, Tetrahedron Lett., submitted for publication). The key reaction, which proceeds in DMF/Pyridine (9:1) at 60°C, is one between a three-directional core, carrying N-hydroxysuccinimide ester functions, and free glucoside and mannoside-containing dendritic wedges with amino groups at their focal points. The development of synthetic routes utilizing unprotected carbohydrates to prepare dendrimers has the advantages that i) it circumvents steric inhibition caused by the presence of protecting groups on the saccharide residues in a growing dendrimer and ii) it avoids the consequent reduction in the surface densities of the final free saccharide-containing dendrimers upon removal of the protecting groups. The absence of any protecting groups on the peripheral glycoside units should now make it possible to prepare large densely-packed carbohydrate-containing dendrimers without the need to resort to protecting group manipulations on the saccharide residues.
    • (1997) Tetrahedron Lett. , vol.38 , pp. 3885-3888
    • Kieburg, C.1    Lindhorst, T.K.2
  • 65
    • 85036489645 scopus 로고    scopus 로고
    • submitted for publication
    • Note added in proof: The feasibility of using unprotected carbohydrates in dendrimer syntheses has been established very recently. Kieburg and Lindhorst have demonstrated that unprotected carbohydrates, tethered with isothiocyanate functional groups, can readily form thiourea bridges with amine-terminated PAMAM dendrimers (C. Kieburg, T. K. Lindhorst, Tetrahedron Lett. 1997, 38, 3885-3888). In a convergent synthetic approach, we have synthesized some lower-generation carbohydrate-containing dendrimers using unprotected carbohydrates (N. Jayaraman, J. F. Stoddart, Tetrahedron Lett., submitted for publication). The key reaction, which proceeds in DMF/Pyridine (9:1) at 60°C, is one between a three-directional core, carrying N-hydroxysuccinimide ester functions, and free glucoside and mannoside-containing dendritic wedges with amino groups at their focal points. The development of synthetic routes utilizing unprotected carbohydrates to prepare dendrimers has the advantages that i) it circumvents steric inhibition caused by the presence of protecting groups on the saccharide residues in a growing dendrimer and ii) it avoids the consequent reduction in the surface densities of the final free saccharide-containing dendrimers upon removal of the protecting groups. The absence of any protecting groups on the peripheral glycoside units should now make it possible to prepare large densely-packed carbohydrate-containing dendrimers without the need to resort to protecting group manipulations on the saccharide residues.
    • Tetrahedron Lett.
    • Jayaraman, N.1    Stoddart, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.