-
5
-
-
3242850350
-
Light emission from silicon: Progress towards Si-based optoelectronics
-
Proceedings of E-MRS
-
For recent articles see Proceedings of E-MRS, Light emission from silicon: progress towards Si-based optoelectronics, J. Lumin. 80 (1999).
-
(1999)
J. Lumin.
, vol.80
-
-
-
7
-
-
4243571094
-
-
N. A. Hill and K. B. Whaley, J. Electron. Mater. 25, 269 (1996); Phys. Rev. Lett. 75, 1130 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 1130
-
-
-
8
-
-
0008813837
-
-
M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. 82, 197 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 197
-
-
Wolkin, M.V.1
Jorne, J.2
Fauchet, P.M.3
Allan, G.4
Delerue, C.5
-
10
-
-
19844375984
-
-
P. Mutti, G. Ghislotti, S. Bertoni, L. Bonoldi, G. F. Cerofolini, L. Meda, E. Grilli, and M. Guzzi, Appl. Phys. Lett. 66, 851 (1995).
-
(1995)
Appl. Phys. Lett.
, vol.66
, pp. 851
-
-
Mutti, P.1
Ghislotti, G.2
Bertoni, S.3
Bonoldi, L.4
Cerofolini, G.F.5
Meda, L.6
Grilli, E.7
Guzzi, M.8
-
11
-
-
0029230774
-
-
J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, Mater. Res. Soc. Symp. Proc. 358, 175 (1995); H. M. Cheong, W. Paul, S. P. Withrow, J. G. Zhu, J. D. Budai, C. W. White, and D. M. Hembree, Appl. Phys. Lett. 68, 87 (1996).
-
(1995)
Mater. Res. Soc. Symp. Proc.
, vol.358
, pp. 175
-
-
Zhu, J.G.1
White, C.W.2
Budai, J.D.3
Withrow, S.P.4
Chen, Y.5
-
12
-
-
0029752582
-
-
J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, Mater. Res. Soc. Symp. Proc. 358, 175 (1995); H. M. Cheong, W. Paul, S. P. Withrow, J. G. Zhu, J. D. Budai, C. W. White, and D. M. Hembree, Appl. Phys. Lett. 68, 87 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 87
-
-
Cheong, H.M.1
Paul, W.2
Withrow, S.P.3
Zhu, J.G.4
Budai, J.D.5
White, C.W.6
Hembree, D.M.7
-
13
-
-
0029235446
-
-
T. Komoda, J. P. Kelly, A. Nejim, K. P. Homewood, P. L. F. Hemment, and B. J. Sealy, Mater. Res. Soc. Symp. Proc. 358, 163 (1995).
-
(1995)
Mater. Res. Soc. Symp. Proc.
, vol.358
, pp. 163
-
-
Komoda, T.1
Kelly, J.P.2
Nejim, A.3
Homewood, K.P.4
Hemment, P.L.F.5
Sealy, B.J.6
-
14
-
-
0009447589
-
-
G. Ghislotti, B. Nielsen, P. Asoka-Kumar, K.G. Lynn, A. Gambhir, L. F. Di Mauro, and C. E. Bottani, J. Appl. Phys. 79, 8660 (1996).
-
(1996)
J. Appl. Phys.
, vol.79
, pp. 8660
-
-
Ghislotti, G.1
Nielsen, B.2
Asoka-Kumar, P.3
Lynn, K.G.4
Gambhir, A.5
Di Mauro, L.F.6
Bottani, C.E.7
-
15
-
-
0042140898
-
-
K. S. Min, K.V. Shcheglov, C. M. Yang, H. A. Atwater, M. L. Brongersma, and A. Polman, Appl. Phys. Lett. 69, 2033 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.69
, pp. 2033
-
-
Min, K.S.1
Shcheglov, K.V.2
Yang, C.M.3
Atwater, H.A.4
Brongersma, M.L.5
Polman, A.6
-
16
-
-
0030569871
-
-
L.-S. Liao, X.-M. Bao, X.-Q. Zheng, N.-S. Li, and N.-B. Min, Appl. Phys. Lett. 68, 850 (1996).
-
(1996)
Appl. Phys. Lett.
, vol.68
, pp. 850
-
-
Liao, L.-S.1
Bao, X.-M.2
Zheng, X.-Q.3
Li, N.-S.4
Min, N.-B.5
-
17
-
-
0031123966
-
-
J. Linnros, A. Galeckas, N. Lalic, and V. Grivickas, Thin Solid Films 297, 167 (1997).
-
(1997)
Thin Solid Films
, vol.297
, pp. 167
-
-
Linnros, J.1
Galeckas, A.2
Lalic, N.3
Grivickas, V.4
-
18
-
-
0031102861
-
-
S. Guha, M. D. Pace, D. N. Dunn, and I. L. Singer, Appl. Phys. Lett. 70, 1207 (1997).
-
(1997)
Appl. Phys. Lett.
, vol.70
, pp. 1207
-
-
Guha, S.1
Pace, M.D.2
Dunn, D.N.3
Singer, I.L.4
-
21
-
-
0027667651
-
-
S. Hayashi, T. Nagareda, Y. Kanzawa, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 32, 3840 (1993); Y. Kanzawa, T. Kageyama, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Solid State Commun. 102, 533 (1997).
-
(1993)
Jpn. J. Appl. Phys., Part 1
, vol.32
, pp. 3840
-
-
Hayashi, S.1
Nagareda, T.2
Kanzawa, Y.3
Yamamoto, K.4
-
22
-
-
0031144239
-
-
S. Hayashi, T. Nagareda, Y. Kanzawa, and K. Yamamoto, Jpn. J. Appl. Phys., Part 1 32, 3840 (1993); Y. Kanzawa, T. Kageyama, S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, Solid State Commun. 102, 533 (1997).
-
(1997)
Solid State Commun.
, vol.102
, pp. 533
-
-
Kanzawa, Y.1
Kageyama, T.2
Takeoka, S.3
Fujii, M.4
Hayashi, S.5
Yamamoto, K.6
-
24
-
-
0021463321
-
-
D. J. DiMaria, J. R. Kirtley, E. J. Pakulis, D. W. Dong, T. S. Kuan, F. L. Pesavento, T. N. Theis, J. A. Cutro, and S. D. Brorson, J. Appl. Phys. 56, 401 (1984).
-
(1984)
J. Appl. Phys.
, vol.56
, pp. 401
-
-
DiMaria, D.J.1
Kirtley, J.R.2
Pakulis, E.J.3
Dong, D.W.4
Kuan, T.S.5
Pesavento, F.L.6
Theis, T.N.7
Cutro, J.A.8
Brorson, S.D.9
-
27
-
-
0347451080
-
-
edited by O. Bisi, S. U. Campisano, L. Pavesi, and F. Priolo IOS Press, Amsterdam
-
J. Linnros, in Proceedings of the International School of Physics 'Enrico Fermi' 1998, edited by O. Bisi, S. U. Campisano, L. Pavesi, and F. Priolo (IOS Press, Amsterdam, 1999), p. 47.
-
(1999)
Proceedings of the International School of Physics 'Enrico Fermi' 1998
, pp. 47
-
-
Linnros, J.1
-
29
-
-
0028409216
-
-
G. Mauckner, K. Thonke, T. Baier, T. Walter, and R. Sauer, J. Appl. Phys. 75, 4167 (1994).
-
(1994)
J. Appl. Phys.
, vol.75
, pp. 4167
-
-
Mauckner, G.1
Thonke, K.2
Baier, T.3
Walter, T.4
Sauer, R.5
-
32
-
-
85034559194
-
-
note
-
In a few cases the derivative of Eq. (1) was also introduced for fitting of the decay.
-
-
-
-
33
-
-
0029229245
-
-
Using the free carrier absorption technique, indeed, it was demonstrated that the total free carrier (i.e. excited carriers) concentration scales essentially linearly with the wavelength-integrated PL yield in porous Si, see: V. Grivickas and J. Linnros, Mater. Res. Soc. Symp. Proc. 358, 543 (1995); Thin Solid Films 255, 70 (1995).
-
(1995)
Mater. Res. Soc. Symp. Proc.
, vol.358
, pp. 543
-
-
Grivickas, V.1
Linnros, J.2
-
34
-
-
0029229245
-
-
Using the free carrier absorption technique, indeed, it was demonstrated that the total free carrier (i.e. excited carriers) concentration scales essentially linearly with the wavelength-integrated PL yield in porous Si, see: V. Grivickas and J. Linnros, Mater. Res. Soc. Symp. Proc. 358, 543 (1995); Thin Solid Films 255, 70 (1995).
-
(1995)
Thin Solid Films
, vol.255
, pp. 70
-
-
-
36
-
-
85034529873
-
-
note
-
The interconnected network of porous Si, indeed, fulfills the requirements of such a system where potential barriers between nanocrystals form migration barriers and larger crystals, with correspondingly smaller effective band gap, serve as temporary traps.
-
-
-
-
37
-
-
85034536336
-
-
private communication
-
C. Delerue (private communication); E. Martin, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 50, 18 258 (1994).
-
-
-
Delerue, C.1
-
38
-
-
0001418895
-
-
C. Delerue (private communication); E. Martin, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 50, 18 258 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 18258
-
-
Martin, E.1
Delerue, C.2
Allan, G.3
Lannoo, M.4
-
39
-
-
85034545752
-
-
note
-
+ isotope was used and contamination from other molecules with the same mass/charge ratio cannot be excluded.
-
-
-
-
41
-
-
3242832034
-
-
PhD thesis, Bibliotekets Reproservice, Göteborg
-
In the calculations progressive erosion of the sample by sputtering was not taken into account. For a sputtering coefficient of ∼0.5 (H. Jacobsson, PhD thesis, Bibliotekets Reproservice, Göteborg, 1993) a 200 Å loss of material would be expected at maximum dose leading to a slightly modified depth distribution.
-
(1993)
-
-
Jacobsson, H.1
-
43
-
-
0031636790
-
-
J. Linnros, A. Galeckas, A. Pareaud, N. Lalic, V. Grivickas, and L. Hultman, Mater. Res. Soc. Symp. Proc. 486, 249 (1998).
-
(1998)
Mater. Res. Soc. Symp. Proc.
, vol.486
, pp. 249
-
-
Linnros, J.1
Galeckas, A.2
Pareaud, A.3
Lalic, N.4
Grivickas, V.5
Hultman, L.6
-
44
-
-
85034533424
-
-
note
-
The higher yields of the samples implanted at 37 keV, compared to those implanted at 40 keV, is most likely related to a higher peak atomic concentration combined with a PL saturation at high doses.
-
-
-
-
45
-
-
85034541391
-
-
note
-
A further reason for the increased lifetime might be that the system of nanocrystals has fewer interconnecting pathways, effectively reducing the diffusion of excitons.
-
-
-
-
47
-
-
85034553631
-
-
note
-
At the high annealing temperatures used one would not expect different crystal shapes as free energy considerations would favor a particular shape, e.g., spherical nanocrystals.
-
-
-
-
48
-
-
85034554566
-
-
note
-
2 matrix in proximity to a silicon layer.
-
-
-
|