-
1
-
-
33745014742
-
On the quantum correction for thermodynamic equilibrium
-
E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932).
-
(1932)
Phys. Rev.
, vol.40
, pp. 749-759
-
-
Wigner, E.P.1
-
2
-
-
0001555225
-
Wigners function and other distribution functions in mock phase spaces
-
N. L. Balazs and B. K. Jennings, “Wigner’s function and other distribution functions in mock phase spaces,” Phys. Rep. 104, 347–391 (1984)
-
(1984)
Phys. Rep.
, vol.104
, pp. 347-391
-
-
Balazs, N.L.1
Jennings, B.K.2
-
3
-
-
34547303281
-
Distribution functions in physics: Fundamentals
-
M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep. 106, 121–167 (1984)
-
(1984)
Phys. Rep.
, vol.106
, pp. 121-167
-
-
Hillery, M.1
O’Connell, R.F.2
Scully, M.O.3
Wigner, E.P.4
-
4
-
-
0001657553
-
The Wigner representation of quantum optics
-
V. I. Tatarskii, “The Wigner representation of quantum optics,” Usp. Fiz. Nauk. 139, 587–619 (1983)
-
(1983)
Usp. Fiz. Nauk.
, vol.139
, pp. 587-619
-
-
Tatarskii, V.I.1
-
5
-
-
84931510621
-
-
[Sov. Phys. Usp. 26, 311–327 (1983)].
-
(1983)
Sov. Phys. Usp.
, vol.26
, pp. 311-327
-
-
-
6
-
-
33645082904
-
The semiclassical evolution of wave packets
-
R. J. Littlejohn, “The semiclassical evolution of wave packets,” Phys. Rep. 138, 193–291 (1986).
-
(1986)
Phys. Rep.
, vol.138
, pp. 193-291
-
-
Littlejohn, R.J.1
-
7
-
-
85010171495
-
Radiometry and coherence
-
A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 58, 1256–1259 (1968).
-
(1968)
J. Opt. Soc. Am.
, vol.58
, pp. 1256-1259
-
-
Walther, A.1
-
10
-
-
0018309158
-
On the existence of a radiance function for finite planar sources of arbitrary state of coherence
-
A. T. Friberg, “On the existence of a radiance function for finite planar sources of arbitrary state of coherence,” J. Opt. Soc. Am. 69, 192–198 (1979).
-
(1979)
J. Opt. Soc. Am.
, vol.69
, pp. 192-198
-
-
Friberg, A.T.1
-
11
-
-
0000760091
-
Quantum mechanical distribution functions revisited
-
W. Yourgrau and A. van der Merwe, eds. (MIT Press, Cambridge, Mass
-
E. P. Wigner, “Quantum mechanical distribution functions revisited,” in Perspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT Press, Cambridge, Mass., 1971), pp. 25–36.
-
(1971)
Perspectives in Quantum Theory
, pp. 25-36
-
-
Wigner, E.P.1
-
12
-
-
0004020655
-
-
Cambridge U. Press, Cambridge, UK, Chap. 5
-
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), Chap. 5.
-
(1995)
Optical Coherence and Quantum Optics
-
-
Mandel, L.1
Wolf, E.2
-
13
-
-
0001211430
-
New theory of radiative energy transfer in free electromagnetic fields
-
E. Wolf, “New theory of radiative energy transfer in free electromagnetic fields,” Phys. Rev. D 13, 869–886 (1976).
-
(1976)
Phys. Rev. D
, vol.13
, pp. 869-886
-
-
Wolf, E.1
-
14
-
-
0037570508
-
Quantum theory of radiative transfer
-
E. G. C. Sudarshan, “Quantum theory of radiative transfer,” Phys. Rev. A 23, 2802–2809 (1981).
-
(1981)
Phys. Rev. A
, vol.23
, pp. 2802-2809
-
-
Sudarshan, E.G.C.1
-
15
-
-
84975625651
-
Statistical wave-theoretical derivation of the free-space transport equation of radiometry
-
A. T. Friberg, G. S. Agarwal, J. T. Foley, and E. Wolf, “Statistical wave-theoretical derivation of the free-space transport equation of radiometry,” J. Opt. Soc. Am. B 9, 1386–1393 (1992).
-
(1992)
J. Opt. Soc. Am. B
, vol.9
, pp. 1386-1393
-
-
Friberg, A.T.1
Agarwal, G.S.2
Foley, J.T.3
Wolf, E.4
-
16
-
-
18344373564
-
Ordered expansions in boson amplitude operators
-
K. E. Cahill and R. J. Glauber, “Ordered expansions in boson amplitude operators,” Phys. Rev. 177, 1857–1881 (1969)
-
(1969)
Phys. Rev.
, vol.177
, pp. 1857-1881
-
-
Cahill, K.E.1
Glauber, R.J.2
-
17
-
-
4243358746
-
Density operators and quasiprobability distributions
-
“Density operators and quasiprobability distributions,” Phys. Rev. 177, 1882–1902 (1969).
-
(1969)
Phys. Rev.
, vol.177
, pp. 1882-1902
-
-
-
18
-
-
0001031543
-
Calculus for functions of non-commuting operators and general phase space methods in quantum mechanics: I. Mapping theorems and ordering of functions of noncommuting operators
-
G. S. Agarwal and E. Wolf, “Calculus for functions of non-commuting operators and general phase space methods in quantum mechanics: I. Mapping theorems and ordering of functions of noncommuting operators,” Phys. Rev. D 2, 2161–2186 (1970)
-
(1970)
Phys. Rev. D
, vol.2
, pp. 2161-2186
-
-
Agarwal, G.S.1
Wolf, E.2
-
19
-
-
4243655996
-
Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics: II. Quantum mechanics in phase space
-
‘Calculus for functions of noncommuting operators and general phase space methods in quantum mechanics: II. Quantum mechanics in phase space,” Phys. Rev. D 2, 2187–2205 (1970).
-
(1970)
Phys. Rev. D
, vol.2
, pp. 2187-2205
-
-
-
20
-
-
0000273864
-
Radiometry and coherence
-
A. Walther, “Radiometry and coherence,” J. Opt. Soc. Am. 63, 1622–1623 (1973).
-
(1973)
J. Opt. Soc. Am.
, vol.63
, pp. 1622-1623
-
-
Walther, A.1
-
21
-
-
0023327893
-
The radiance and phase-space representations of the cross-spectral density operator
-
G. S. Agarwal, J. T. Foley, and E. Wolf, “The radiance and phase-space representations of the cross-spectral density operator,” Opt. Commun. 62, 67–72 (1987).
-
(1987)
Opt. Commun.
, vol.62
, pp. 67-72
-
-
Agarwal, G.S.1
Foley, J.T.2
Wolf, E.3
-
22
-
-
0016073256
-
Ambiguity function in Fourier optics
-
A. Papoulis, “Ambiguity function in Fourier optics,” J. Opt. Soc. Am. 64, 779–788 (1974).
-
(1974)
J. Opt. Soc. Am.
, vol.64
, pp. 779-788
-
-
Papoulis, A.1
-
23
-
-
0037908577
-
Analog radar signal design and digital signal processing—a Heisenberg nilpotent Lie group approach
-
Lecture Notes in Physics, J. Sanchez Mondragon and K. B. Wolf, eds. (Springer-Verlag, Berlin
-
W. Schempp, “Analog radar signal design and digital signal processing—a Heisenberg nilpotent Lie group approach,” in Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics, J. Sanchez Mondragon and K. B. Wolf, eds. (Springer-Verlag, Berlin, 1986), pp. 1–27.
-
(1986)
Lie Methods in Optics
, vol.250
, pp. 1-27
-
-
Schempp, W.1
-
24
-
-
0017957904
-
The Wigner distribution function applied to optical signals and systems
-
M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978)
-
(1978)
Opt. Commun.
, vol.25
, pp. 26-30
-
-
Bastiaans, M.J.1
-
25
-
-
85010130011
-
Wigner distribution function and its application to first-order optics
-
“Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
-
(1979)
J. Opt. Soc. Am.
, vol.69
, pp. 1710-1716
-
-
-
26
-
-
0038246180
-
Wigner distribution function applied to partially coherent light
-
P. M. Mejias, H. Weber, R. Martinez-Herrero, and A. Gonzalez-Urena, eds. (Sociedad Espanola de Optica, Madrid
-
M. J. Bastiaans, “Wigner distribution function applied to partially coherent light,” in Laser Beam Characterization, P. M. Mejias, H. Weber, R. Martinez-Herrero, and A. Gonzalez-Urena, eds. (Sociedad Espanola de Optica, Madrid, 1993), pp. 65–87.
-
(1993)
Laser Beam Characterization
, pp. 65-87
-
-
Bastiaans, M.J.1
-
27
-
-
0001335710
-
Generalized rays in first order optics: Transformation properties of Gaussian Schell-model fields
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984).
-
(1984)
Phys. Rev. A
, vol.29
, pp. 3273-3279
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
28
-
-
0000750528
-
Anisotropic Gaussian Schell-model beams: Passage through optical systems and associated invariants
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
-
(1985)
Phys. Rev. A
, vol.31
, pp. 2419-2434
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
29
-
-
4244042893
-
Gaussian Wigner distributions in quantum mechanics and optics
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987)
-
(1987)
Phys. Rev. A
, vol.36
, pp. 3868-3880
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
30
-
-
0038584779
-
Gaussian Wigner distributions: A complete characterization
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian Wigner distributions: a complete characterization,” Phys. Lett. A 124, 223–228 (1987).
-
(1987)
Phys. Lett. A
, vol.124
, pp. 223-228
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
31
-
-
0023982773
-
Sudarshan, “Partially coherent beams and a generalized abcd-law,” Opt
-
R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized abcd-law,” Opt. Commun. 65, 322–328 (1988).
-
(1988)
Commun
, vol.65
, pp. 322-328
-
-
Simon, R.1
Mukunda, N.2
-
32
-
-
25344431927
-
Gaussian pure states in quantum mechanics and the symplectic group
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian pure states in quantum mechanics and the symplectic group,” Phys. Rev. A 37, 2028–2038 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 2028-2038
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
33
-
-
0001679261
-
Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms
-
R. Simon, N. Mukunda, and B. Dutta, “Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A 49, 1567–1683 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 1567-1683
-
-
Simon, R.1
Mukunda, N.2
Dutta, B.3
-
34
-
-
0027614581
-
On the different definitions of laser beam moments
-
R. Martinez-Herrero, P. M. Mejias, and H. Weber, “On the different definitions of laser beam moments,” Opt. Quantum Electron. 25, 423–428 (1993)
-
(1993)
Opt. Quantum Electron.
, vol.25
, pp. 423-428
-
-
Martinez-Herrero, R.1
Mejias, P.M.2
Weber, H.3
-
35
-
-
0025546679
-
New developments in laser resonators
-
Optical Resonators, D. A. Holmes, ed
-
A. E. Siegman, “New developments in laser resonators,” in Optical Resonators, D. A. Holmes, ed. Proc. SPIE 1224, 2–14 (1990).
-
(1990)
Proc. SPIE
, vol.1224
, pp. 2-14
-
-
Siegman, A.E.1
-
36
-
-
84975607699
-
Parametric characterization of general partially coherent beams propagating through ABCD optical systems
-
J. Serna, R. Martinez-Herrero, and P. M. Mejias, “Parametric characterization of general partially coherent beams propagating through ABCD optical systems,” J. Opt. Soc. Am. A 8, 1094–1098 (1991).
-
(1991)
J. Opt. Soc. Am. A
, vol.8
, pp. 1094-1098
-
-
Serna, J.1
Martinez-Herrero, R.2
Mejias, P.M.3
-
37
-
-
0009092454
-
Second-order moments of the Wigner distribution function in first-order optical systems
-
M. J. Bastiaans, “Second-order moments of the Wigner distribution function in first-order optical systems,” Optik (Stuttgart) 88, 163–168 (1991).
-
(1991)
Optik (Stuttgart)
, vol.88
, pp. 163-168
-
-
Bastiaans, M.J.1
-
38
-
-
0009823698
-
Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems
-
J. Serna, P. M. Mejias, and R. Martinez-Herrero, “Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems,” J. Mod. Opt. 39, 625–635 (1992)
-
(1992)
J. Mod. Opt.
, vol.39
, pp. 625-635
-
-
Serna, J.1
Mejias, P.M.2
Martinez-Herrero, R.3
-
39
-
-
0008229802
-
Intensity-moments characterization of general pulsed paraxial beams with the Wigner distribution function
-
J. Yang and D. Fan, “Intensity-moments characterization of general pulsed paraxial beams with the Wigner distribution function,” J. Opt. Soc. Am. A 16, 2488–2493 (1999).
-
(1999)
J. Opt. Soc. Am. A
, vol.16
, pp. 2488-2493
-
-
Yang, J.1
Fan, D.2
-
40
-
-
0008050994
-
Geometry and uncertainty
-
F. J. Narcowich, “Geometry and uncertainty,” J. Math. Phys. 31, 354–364 (1990)
-
(1990)
J. Math. Phys.
, vol.31
, pp. 354-364
-
-
Narcowich, F.J.1
-
41
-
-
0027588465
-
Transformation of pulsed nonideal beams in a four-dimensional domain
-
Q. Lin, S. Wang, J. Alda, and E. Bernabeu, “Transformation of pulsed nonideal beams in a four-dimensional domain,” Opt. Lett. 18, 669–671 (1993).
-
(1993)
Opt. Lett.
, vol.18
, pp. 669-671
-
-
Lin, Q.1
Wang, S.2
Alda, J.3
Bernabeu, E.4
-
42
-
-
0001135437
-
Wave optical analysis of the phase space analyzer
-
H. Weber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543–559 (1992)
-
(1992)
J. Mod. Opt.
, vol.39
, pp. 543-559
-
-
Weber, H.1
-
43
-
-
0027544366
-
Invariance properties of general astigmatic beams through firstorder optical systems
-
D. Onciul, “Invariance properties of general astigmatic beams through firstorder optical systems,” J. Opt. Soc. Am. A 10, 295–298 (1993)
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 295-298
-
-
Onciul, D.1
-
44
-
-
84975603450
-
Generalized beam parameters and transformation laws for partially coherent light
-
S. Lavi, R. Prochaska, and E. Keren, “Generalized beam parameters and transformation laws for partially coherent light,” Appl. Opt. 27, 3696–3703 (1988).
-
(1988)
Appl. Opt.
, vol.27
, pp. 3696-3703
-
-
Lavi, S.1
Prochaska, R.2
Keren, E.3
-
45
-
-
0002326597
-
Measuring and handling general astigmatic beams
-
P. M. Mejias, H. Weber, R. Martinez-Herrero, and A. Gonzalez-Urena, eds. (Sociedad Espanola de Optica, Madrid, Spain
-
G. Nemes, “Measuring and handling general astigmatic beams,” in Laser Beam Characterization, P. M. Mejias, H. Weber, R. Martinez-Herrero, and A. Gonzalez-Urena, eds. (Sociedad Espanola de Optica, Madrid, Spain, 1993), pp. 325–358.
-
(1993)
Laser Beam Characterization
, pp. 325-358
-
-
Nemes, G.1
-
46
-
-
0028494082
-
Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (Anamorphic) optics
-
G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2257-2264
-
-
Nemes, G.1
Siegman, A.E.2
-
47
-
-
0033630644
-
Effect of holes and vortices on beam quality
-
S. Ramee and R. Simon, “Effect of holes and vortices on beam quality,” J. Opt. Soc. Am. A 17, 84–94 (2000).
-
(2000)
J. Opt. Soc. Am. A
, vol.17
, pp. 84-94
-
-
Ramee, S.1
Simon, R.2
-
48
-
-
0012143278
-
Twist of coherent fields and beam quality
-
Third International Workshop on Laser Beam and Optics Characterization, M. Morin and A. Giesen, eds
-
B. Eppich, A. T. Friberg, C. Gao, and H. Weber, “Twist of coherent fields and beam quality,” in Third International Workshop on Laser Beam and Optics Characterization, M. Morin and A. Giesen, eds., Proc. SPIE 2870, 260–267 (1996).
-
(1996)
Proc. SPIE
, vol.2870
, pp. 260-267
-
-
Eppich, B.1
Friberg, A.T.2
Gao, C.3
Weber, H.4
-
49
-
-
0027695925
-
Decoupling of coherent Gaussian beam with general astigmatism
-
J. Serna and G. Nemes, “Decoupling of coherent Gaussian beam with general astigmatism,” Opt. Lett. 18, 1774–1776 (1993).
-
(1993)
Opt. Lett.
, vol.18
, pp. 1774-1776
-
-
Serna, J.1
Nemes, G.2
-
50
-
-
0038584778
-
Synthesis of general astigmatic optical systems, the detwisting procedure, and the beam quality factors for general astigmatic laser beams
-
H. Weber, N. Reng, J. Ludtke, and P. M. Mejias, eds. (Festkorper-Laser-Institut Berlin GmbH, Berlin
-
G. Nemes, “Synthesis of general astigmatic optical systems, the detwisting procedure, and the beam quality factors for general astigmatic laser beams,” in Laser Beam Characterization, H. Weber, N. Reng, J. Ludtke, and P. M. Mejias, eds. (Festkorper-Laser-Institut Berlin GmbH, Berlin, 1994), pp. 93–104.
-
(1994)
Laser Beam Characterization
, pp. 93-104
-
-
Nemes, G.1
-
51
-
-
0027284610
-
Twisted Gaussian Schellmodel beams
-
R. Simon and N. Mukunda, “Twisted Gaussian Schellmodel beams,” J. Opt. Soc. Am. A 10, 95–109 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 95-109
-
-
Simon, R.1
Mukunda, N.2
-
52
-
-
0028460223
-
Interpretation and experimental demonstration of twisted Gaussian Schell-model beams
-
A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 1818-1826
-
-
Friberg, A.T.1
Tervonen, E.2
Turunen, J.3
-
53
-
-
84946296454
-
Twisted Gaussian Schell-model beams: A superposition model
-
D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994).
-
(1994)
J. Mod. Opt.
, vol.41
, pp. 1391-1399
-
-
Ambrosini, D.1
Bagini, V.2
Gori, F.3
Santarsiero, M.4
-
54
-
-
0001731668
-
Twist phase in Gaussian-beam optics
-
R. Simon and N. Mukunda, “Twist phase in Gaussian-beam optics,” J. Opt. Soc. Am. A 15, 2373–2382 (1998).
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 2373-2382
-
-
Simon, R.1
Mukunda, N.2
-
55
-
-
0000064372
-
Bargmann invariant and the geometry of the Gouy effect
-
R. Simon and N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880–883 (1993)
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 880-883
-
-
Simon, R.1
Mukunda, N.2
-
56
-
-
0012641307
-
Quantum kinematic approach to the geometric phase. I. General formalism
-
N. Mukunda and R. Simon, “Quantum kinematic approach to the geometric phase. I. General formalism,” Ann. Phys. (N.Y.) 228, 205–268 (1993)
-
(1993)
Ann. Phys. (N.Y.)
, vol.228
, pp. 205-268
-
-
Mukunda, N.1
Simon, R.2
-
57
-
-
18844445683
-
Quantum kinematic approach to the geometric phase. II. The case of unitary group representations
-
“Quantum kinematic approach to the geometric phase. II. The case of unitary group representations,” Ann. Phys. (N.Y.) 228, 269–340 (1993).
-
(1993)
Ann. Phys. (N.Y.)
, vol.228
, pp. 269-340
-
-
-
58
-
-
0003972403
-
-
Academic, New York, 401–407
-
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic, New York, 1978), pp. 257–264, 401–407.
-
(1978)
Differential Geometry, Lie Groups, and Symmetric Spaces
, pp. 257-264
-
-
Helgason, S.1
-
59
-
-
84893906822
-
Imaging of optical modes—resonators with internal lenses
-
H. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
-
(1965)
Bell Syst. Tech. J.
, vol.44
, pp. 455-494
-
-
Kogelnik, H.1
-
60
-
-
0027310025
-
Iwasawa decomposition for SU(1, 1) and the Gouy effect for squeezed states
-
R. Simon and N. Mukunda, “Iwasawa decomposition for SU(1, 1) and the Gouy effect for squeezed states,” Opt. Commun. 95, 39–45 (1993).
-
(1993)
Opt. Commun.
, vol.95
, pp. 39-45
-
-
Simon, R.1
Mukunda, N.2
-
61
-
-
0027623650
-
An experiment for the study of the Gouy effect for the squeezed vacuum
-
G. S. Agarwal and R. Simon, “An experiment for the study of the Gouy effect for the squeezed vacuum,” Opt. Commun. 100, 411–414 (1993).
-
(1993)
Opt. Commun.
, vol.100
, pp. 411-414
-
-
Agarwal, G.S.1
Simon, R.2
-
62
-
-
0001442483
-
Iwasawa decomposition in first-order optics: Universal treatment of shape-invariant propagation for coherent and partially coherent beams
-
R. Simon and N. Mukunda, “Iwasawa decomposition in first-order optics: universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146–2155 (1998).
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 2146-2155
-
-
Simon, R.1
Mukunda, N.2
-
63
-
-
0009431158
-
Shape-invariant anisotropic Gaussian Schell-model beams: A complete characterization
-
R. Simon and N. Mukunda, “Shape-invariant anisotropic Gaussian Schell-model beams: a complete characterization,” J. Opt. Soc. Am. A 15, 1361–1370 (1998)
-
(1998)
J. Opt. Soc. Am. A
, vol.15
, pp. 1361-1370
-
-
Simon, R.1
Mukunda, N.2
-
64
-
-
0000332126
-
Gaussian Schell-model beams and general shape invariance
-
“Gaussian Schell-model beams and general shape invariance,” J. Opt. Soc. Am. A 16, 2465–2475 (1999).
-
(1999)
J. Opt. Soc. Am.
, vol.A16
, pp. 2465-2475
-
-
-
65
-
-
0037570499
-
Paraxial wave optics and relativistic front description. II. The vector theory
-
N. Mukunda, R. Simon, and E. C. G. Sudarshan, “Paraxial wave optics and relativistic front description. II. The vector theory,” Phys. Rev. A 28, 2933–2942 (1983)
-
(1983)
Phys. Rev. A
, vol.28
, pp. 2933-2942
-
-
Mukunda, N.1
Simon, R.2
Sudarshan, E.C.G.3
-
66
-
-
84975581906
-
Fourier optics for the Maxwell field: Formalism and application
-
N. Mukunda, R. Simon, and E. C. G. Sudarshan, “Fourier optics for the Maxwell field: formalism and application,” J. Opt. Soc. Am. A 2, 416–426 (1985).
-
(1985)
J. Opt. Soc. Am. A
, vol.2
, pp. 416-426
-
-
Mukunda, N.1
Simon, R.2
Sudarshan, E.C.G.3
-
67
-
-
0000552337
-
Formal quantum theory of light rays
-
D. Gloge and D. Marcuse, “Formal quantum theory of light rays,” J. Opt. Soc. Am. 59, 1629–1631 (1969)
-
(1969)
J. Opt. Soc. Am.
, vol.59
, pp. 1629-1631
-
-
Gloge, D.1
Marcuse, D.2
-
68
-
-
84966030814
-
-
(Van Nostrand Reinhold, New York, Chap. 3
-
D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972), Chap. 3.
-
(1972)
Light Transmission Optics
-
-
Marcuse, D.1
-
70
-
-
0004205830
-
-
(Cambridge U. Press, Cambridge, UK, Chap. 1
-
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics (Cambridge U. Press, Cambridge, UK, 1984), Chap. 1.
-
(1984)
Symplectic Techniques in Physics
-
-
Guillemin, V.1
Sternberg, S.2
-
71
-
-
0001459151
-
Lens-system diffraction integral written in terms of matrix optics
-
S. A. Collins, Jr., “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1177 (1970).
-
(1970)
J. Opt. Soc. Am
, vol.60
, pp. 1168-1177
-
-
Collins, S.A.1
-
73
-
-
0001332130
-
Realization of first order optical systems using thin lenses
-
E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realization of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985).
-
(1985)
Opt. Acta
, vol.32
, pp. 855-872
-
-
Sudarshan, E.C.G.1
Mukunda, N.2
Simon, R.3
-
74
-
-
0027652515
-
Fractional Fourier transforms and their optical implementation: I
-
D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I,” J. Opt. Soc. Am. A 10, 1875–1881 (1993)
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 1875-1881
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
75
-
-
0027652515
-
Fractional Fourier transforms and their optical implementation. II
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation. II,” J. Opt. Soc. Am. A 10, 2522–2531 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2522-2531
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
76
-
-
0027682286
-
Image rotation, Wigner rotation, and the fractional Fourier transform
-
A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993)
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
77
-
-
21344493264
-
Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: An operator approach
-
S. Abe and J. T. Sheridan, “Generalization of the fractional Fourier transformation to an arbitrary linear lossless transformation: an operator approach,” J. Phys. A 27, 4179–4187 (1994).
-
(1994)
J. Phys. A
, vol.27
, pp. 4179-4187
-
-
Abe, S.1
Sheridan, J.T.2
-
78
-
-
0028483920
-
A simple realization of fractional Fourier transformation and relation to harmonic oscillator Greens function
-
G. S. Agarwal and R. Simon, “A simple realization of fractional Fourier transformation and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23–26 (1994).
-
(1994)
Opt. Commun.
, vol.110
, pp. 23-26
-
-
Agarwal, G.S.1
Simon, R.2
-
79
-
-
0003974331
-
-
Academic, New York
-
O. N. Stavroudis, The Optics of Rays, Wavefronts, and Caustics (Academic, New York, 1972), pp. 288–294.
-
(1972)
The Optics of Rays, Wavefronts, and Caustics
, pp. 288-294
-
-
Stavroudis, O.N.1
-
80
-
-
0034132255
-
Structure of the set of paraxial optical systems
-
R. Simon and K. B. Wolf, “Structure of the set of paraxial optical systems,” J. Opt. Soc. Am. A 17, 342–355 (2000).
-
(2000)
J. Opt. Soc. Am. A
, vol.17
, pp. 342-355
-
-
Simon, R.1
Wolf, K.B.2
-
82
-
-
0038450087
-
Canonical transforms for paraxial wave optics
-
Lecture Notes in Physics, J. Sanchez Mondragon and K. B. Wolf, eds. (Springer-Verlag, Berlin
-
O. Castanos, E. Lopez-Moreno, and K. B. Wolf, “Canonical transforms for paraxial wave optics,” in Lie Methods in Optics, Vol. 250 of Lecture Notes in Physics, J. Sanchez Mondragon and K. B. Wolf, eds. (Springer-Verlag, Berlin, 1986), pp. 159–182.
-
(1986)
Lie Methods in Optics
, vol.250
, pp. 159-182
-
-
Castanos, O.1
Lopez-Moreno, E.2
Wolf, K.B.3
-
83
-
-
0037908574
-
Maxwells equations from geometrical optics
-
T. Pradhan, “Maxwell’s equations from geometrical optics,” Phys. Lett. A 122, 397–398 (1987).
-
(1987)
Phys. Lett. A
, vol.122
, pp. 397-398
-
-
Pradhan, T.1
-
84
-
-
36849112629
-
Linear canonical transformations and their unitary representation
-
M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representation,” J. Math. Phys. 12, 1772–1780 (1971)
-
(1971)
J. Math. Phys.
, vol.12
, pp. 1772-1780
-
-
Moshinsky, M.1
Quesne, C.2
-
85
-
-
36849112326
-
Canonical transformations and matrix elements
-
“Canonical transformations and matrix elements,” 12, 1780–1783 (1971).
-
(1971)
, vol.12
, pp. 1780-1783
-
-
-
87
-
-
0020102586
-
New theory of partial coherence in the spacefrequency domain. Part I: Spectra and cross spectra of steady-state sources
-
E. Wolf, “New theory of partial coherence in the spacefrequency domain. Part I: Spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982).
-
(1982)
J. Opt. Soc. Am.
, vol.72
, pp. 343-351
-
-
Wolf, E.1
-
88
-
-
0019064888
-
Collett-Wolf sources and multimode lasers
-
F. Gori, “Collett-Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980).
-
(1980)
Opt. Commun.
, vol.34
, pp. 301-305
-
-
Gori, F.1
-
89
-
-
0020154921
-
Coherent-mode representation of Gaussian Schell-model sources and their radiation fields
-
A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and their radiation fields,” J. Opt. Soc. Am. 72, 923–928 (1982).
-
(1982)
J. Opt. Soc. Am.
, vol.72
, pp. 923-928
-
-
Starikov, A.1
Wolf, E.2
-
90
-
-
0027652533
-
Twisted Gaussian Schell-model beams. I. Symmetry structure and normalmode spectrum
-
R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normalmode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2008-2016
-
-
Simon, R.1
Sundar, K.2
Mukunda, N.3
-
91
-
-
0029277263
-
Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams
-
K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, pp. 560-569
-
-
Sundar, K.1
Mukunda, N.2
Simon, R.3
-
92
-
-
0001218355
-
When is the Wigner quasi-probability non-negative
-
R. L. Hudson, “When is the Wigner quasi-probability non-negative,” Rep. Math. Phys. 6, 249–252 (1974).
-
(1974)
Rep. Math. Phys.
, vol.6
, pp. 249-252
-
-
Hudson, R.L.1
-
93
-
-
84965041286
-
-
(Oxford U. Press, Oxford, Chap. 19
-
A. E. Siegman, Lasers (Oxford U. Press, Oxford, 1986), Chap. 19.
-
(1986)
Lasers
-
-
Siegman, A.E.1
-
94
-
-
0029394298
-
Representation of Laguerre-Gaussian modes by the Wigner distribution function
-
R. Gase, “Representation of Laguerre-Gaussian modes by the Wigner distribution function,” IEEE J. Quantum Electron. 31, 1811–1818 (1995).
-
(1995)
IEEE J. Quantum Electron.
, vol.31
, pp. 1811-1818
-
-
Gase, R.1
-
95
-
-
0001344129
-
Wigner functions for Helmholtz wave fields
-
K. B. Wolf, M. A. Alonso, and G. W. Forbes, “Wigner functions for Helmholtz wave fields,” J. Opt. Soc. Am. A 16, 2476–2487 (1999).
-
(1999)
J. Opt. Soc. Am. A
, vol.16
, pp. 2476-2487
-
-
Wolf, K.B.1
Alonso, M.A.2
Forbes, G.W.3
-
96
-
-
84975574694
-
Imaging of Gaussian Schellmodel sources
-
A. T. Friberg and J. Turunen, “Imaging of Gaussian Schellmodel sources,” J. Opt. Soc. Am. A 5, 713–720 (1988).
-
(1988)
J. Opt. Soc. Am. A
, vol.5
, pp. 713-720
-
-
Friberg, A.T.1
Turunen, J.2
-
97
-
-
84975551215
-
Beam propagation and the ABCD ray matrices
-
P. A. Belanger, “Beam propagation and the ABCD ray matrices,” Opt. Lett. 16, 196–198 (1991).
-
(1991)
Opt. Lett.
, vol.16
, pp. 196-198
-
-
Belanger, P.A.1
-
98
-
-
0000148310
-
General moment invariants for linear Hamiltonian systems
-
A. J. Dragt, F. Neri, and G. Rangarajan, “General moment invariants for linear Hamiltonian systems,” Phys. Rev. A 45, 2572–2585 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 2572-2585
-
-
Dragt, A.J.1
Neri, F.2
Rangarajan, G.3
-
99
-
-
85010180643
-
-
M. A. Markov, ed. (Nova Science, Commack, N.Y
-
V. V. Dodonov and V. I. Man’ko, Invariants and the Evolution of Nonstationary Quantum Systems, in Proceedings of the Lebedev Physics Institute, M. A. Markov, ed. (Nova Science, Commack, N.Y., 1989), Vol. 183.
-
(1989)
Invariants and the Evolution of Nonstationary Quantum Systems, in Proceedings of the Lebedev Physics Institute
, vol.183
-
-
Dodonov, V.V.1
Man’Ko, V.I.2
-
100
-
-
0001468982
-
Moment invariants for the Vlasov equation
-
D. D. Holm, W. P. Lysenko, and J. C. Scovel, “Moment invariants for the Vlasov equation,” J. Math. Phys. 31, 1610–1615 (1990).
-
(1990)
J. Math. Phys.
, vol.31
, pp. 1610-1615
-
-
Holm, D.D.1
Lysenko, W.P.2
Scovel, J.C.3
-
101
-
-
0001316020
-
On the algebraic problem concerning the normal forms of linear dynamical systems
-
J. Williamson, “On the algebraic problem concerning the normal forms of linear dynamical systems,” Am. J. Math. 58, 141–163 (1936).
-
(1936)
Am. J. Math.
, vol.58
, pp. 141-163
-
-
Williamson, J.1
-
102
-
-
0001252279
-
Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues
-
N. Burgoyne and R. Cushman, “Normal forms for real linear Hamiltonian systems with purely imaginary eigenvalues,” Celest. Mech. 8, 435–443 (1974)
-
(1974)
Celest. Mech.
, vol.8
, pp. 435-443
-
-
Burgoyne, N.1
Cushman, R.2
-
103
-
-
0000105740
-
Canonical forms for symplectic and Hamiltonian matrices
-
A. J. Laub and K. Meyer, “Canonical forms for symplectic and Hamiltonian matrices,” Celest. Mech. 9, 231–238 (1974).
-
(1974)
Celest. Mech.
, vol.9
, pp. 231-238
-
-
Laub, A.J.1
Meyer, K.2
-
104
-
-
0033243844
-
Congruences and canonical forms for a positive matrix: Application to Schweinler-Wigner extremum principle
-
R. Simon, S. Chaturvedi, and V. Srinivasan, “Congruences and canonical forms for a positive matrix: application to Schweinler-Wigner extremum principle,” J. Math. Phys. 40, 3632–3640 (1999).
-
(1999)
J. Math. Phys.
, vol.40
, pp. 3632-3640
-
-
Simon, R.1
Chaturvedi, S.2
Srinivasan, V.3
-
105
-
-
0037908570
-
Generation of partially coherent fields with twist
-
10th Meeting on Optical Engineering in Israel, I. Shladov and S. R. Rotman, eds
-
A. T. Friberg, C. Gao, B. Eppich, and H. Weber, “Generation of partially coherent fields with twist,” in 10th Meeting on Optical Engineering in Israel, I. Shladov and S. R. Rotman, eds., Proc. SPIE 3110, 317–328 (1997).
-
(1997)
Proc. SPIE
, vol.3110
, pp. 317-328
-
-
Friberg, A.T.1
Gao, C.2
Eppich, B.3
Weber, H.4
-
106
-
-
0030134267
-
Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems
-
R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996).
-
(1996)
Pure Appl. Opt.
, vol.5
, pp. 331-343
-
-
Simon, R.1
Friberg, A.T.2
Wolf, E.3
-
107
-
-
0000231728
-
Partially coherent sources with helicoidal modes
-
F. Gori, M. Santarsiero, and V. Borghi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt. 45, 539–554 (1998).
-
(1998)
J. Mod. Opt.
, vol.45
, pp. 539-554
-
-
Gori, F.1
Santarsiero, M.2
Borghi, V.3
-
108
-
-
0032108167
-
Determination of the ten second order moments
-
B. Eppich, C. Gao, and H. Weber, “Determination of the ten second order moments,” Opt. Laser Technol. 30, 337–340 (1998).
-
(1998)
Opt. Laser Technol.
, vol.30
, pp. 337-340
-
-
Eppich, B.1
Gao, C.2
Weber, H.3
-
109
-
-
85010185358
-
Nemes, “Characterization of a doughnut beam using a cylindrical lens
-
presented at the 5th Workshop on Laser Beam and Optics Characterization, Erice, Sicily, Italy, March 20–25
-
J. Serna, F. Encinas-Sanz, and G. Nemes, “Characterization of a doughnut beam using a cylindrical lens,” presented at the 5th Workshop on Laser Beam and Optics Characterization, Erice, Sicily, Italy, March 20–25, 2000.
-
(2000)
-
-
Serna, J.1
Encinas-Sanz, F.2
-
110
-
-
0038246169
-
The two-dimensional symplectic and metaplectic groups and their universal cover
-
B. Gruber, ed. (Plenum, New York
-
R. Simon and N. Mukunda, “The two-dimensional symplectic and metaplectic groups and their universal cover,” in Symmetries in Science VI: from the Rotation Group to Quantum Algebras, B. Gruber, ed. (Plenum, New York, 1993), pp. 659–689.
-
(1993)
Symmetries in Science VI: From the Rotation Group to Quantum Algebras
, pp. 659-689
-
-
Simon, R.1
Mukunda, N.2
-
111
-
-
0007996778
-
Hamiltons theory of turns generalized to Sp(2, R)
-
R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Hamilton’s theory of turns generalized to Sp(2, R),” Phys. Rev. Lett. 62, 1331–1334 (1988)
-
(1988)
Phys. Rev. Lett.
, vol.62
, pp. 1331-1334
-
-
Simon, R.1
Mukunda, N.2
Sudarshan, E.C.G.3
-
112
-
-
0037908569
-
The theory of screws—a new geometric representation for the group SU(1, 1)
-
R. Simon, N. Mukunda, and E. C. G. Sudarshan, “The theory of screws—a new geometric representation for the group SU(1, 1),” J. Math. Phys. 30, 1000–1006 (1989).
-
(1989)
J. Math. Phys.
, vol.30
, pp. 1000-1006
-
-
Simon, R.1
Mukunda, N.2
Sudarshan, E.C.G.3
-
113
-
-
27644491636
-
Root and power transformations in optics
-
J. Shamir and N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415–2423 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, pp. 2415-2423
-
-
Shamir, J.1
Cohen, N.2
-
114
-
-
0000588867
-
Peres-Horodecki separability criterion for continuous variable systems
-
R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2726-2729
-
-
Simon, R.1
-
115
-
-
0037906328
-
Propagation of the higher-order intensity moments in quadratic-index media
-
H. Weber, “Propagation of the higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, S1027-S1049 (1992)
-
(1992)
Opt. Quantum Electron.
, vol.24
, pp. S1027-S1049
-
-
Weber, H.1
-
116
-
-
0028531612
-
Higher-order moments of the Wigner distribution function in first-order optical systems
-
D. Dragoman, “Higher-order moments of the Wigner distribution function in first-order optical systems,” J. Opt. Soc. Am. A 11, 2643–2646 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2643-2646
-
-
Dragoman, D.1
-
117
-
-
0037908613
-
The metaplectic group and Fourier optics
-
H. Bacry and M. Cadilhac, “The metaplectic group and Fourier optics,” Phys. Rev. A 23, 2533–2536 (1981).
-
(1981)
Phys. Rev. A
, vol.23
, pp. 2533-2536
-
-
Bacry, H.1
Cadilhac, M.2
-
118
-
-
0020102107
-
First-order optics—a canonical operator representation: Lossless systems
-
M. Nazarathy and J. Shamir, “First-order optics—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982).
-
(1982)
J. Opt. Soc. Am.
, vol.72
, pp. 356-364
-
-
Nazarathy, M.1
Shamir, J.2
-
119
-
-
84975541751
-
Gaussian Maxwell beams
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian Maxwell beams,” J. Opt. Soc. Am. A 3, 356–360 (1986)
-
(1986)
J. Opt. Soc. Am. A
, vol.3
, pp. 356-360
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
120
-
-
0023220926
-
Cross polarization in laser beams
-
“Cross polarization in laser beams,” Appl. Opt. 26, 1589–1593 (1987).
-
(1987)
Appl. Opt.
, vol.26
, pp. 1589-1593
-
-
|