-
1
-
-
84965041286
-
-
Oxford U. Press, Oxford, UK, Chap17
-
A. E. Siegman, Lasers (Oxford U. Press, Oxford, UK, 1986), Chap. 17.
-
(1986)
Lasers
-
-
Siegman, A.E.1
-
2
-
-
0037908613
-
The metaplectic group and Fourier optics
-
H. Bacry and M. Cadilhac, “The metaplectic group and Fourier optics, ” Phys. Rev. A 23, 2533–2536 (1981);.
-
(1981)
Phys. Rev.
, vol.A23
, pp. 2533-2536
-
-
Bacry, H.1
Cadilhac, M.2
-
3
-
-
0020102107
-
First order systems—a canonical operator representation: Lossless systems
-
M. Nazarathy and J. Shamir, “First order systems—a canonical operator representation: lossless systems, ” J.Opt. Soc. Am. A 72, 356–364 (1982).
-
(1982)
J.Opt. Soc. Am.
, vol.A72
, pp. 356-364
-
-
Nazarathy, M.1
Shamir, J.2
-
4
-
-
0001332130
-
Realization of first order optical systems using thin lenses
-
E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realization of first order optical systems using thin lenses, ” Opt. Acta 32, 855–872 (1985).
-
(1985)
Opt. Acta
, vol.32
, pp. 855-872
-
-
Sudarshan, E.C.G.1
Mukunda, N.2
Simon, R.3
-
5
-
-
84893906822
-
Imaging of optical modes—resonators with internal lenses
-
H. Kogelnik, “Imaging of optical modes—resonators with internal lenses, ” Bell Syst. Tech. J. 44, 455–494 (1965).
-
(1965)
Bell Syst. Tech. J.
, vol.44
, pp. 455-494
-
-
Kogelnik, H.1
-
6
-
-
0000064372
-
Bargmann invariant and the geometry of the Gouy effect
-
R. Simon and N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect, ” Phys. Rev. Lett. 70, 880–883 (1993);.
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 880-883
-
-
Simon, R.1
Mukunda, N.2
-
7
-
-
0027310025
-
Iwasawa decomposition for SU (1, 1) and the Gouy effect for squeezed states
-
R. Simon and N. Mukunda, “Iwasawa decomposition for SU (1, 1) and the Gouy effect for squeezed states, ” Opt. Commun. 95, 39–45 (1993);.
-
(1993)
Opt. Commun.
, vol.95
, pp. 39-45
-
-
Simon, R.1
Mukunda, N.2
-
8
-
-
0027623650
-
An experiment for the study of the Gouy effect for the squeezed vacuum
-
G. S. Agarwal and R. Simon, “An experiment for the study of the Gouy effect for the squeezed vacuum, ” Opt. Commun. 100, 411–414 (1993).
-
(1993)
Opt. Commun.
, vol.100
, pp. 411-414
-
-
Agarwal, G.S.1
Simon, R.2
-
9
-
-
0004020655
-
-
Cambridge U. Press, Cambridge, UK, Chap
-
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), Chap. 5.
-
(1995)
Optical Coherence and Quantum Optics
, vol.5
-
-
Mandel, L.1
Wolf, E.2
-
10
-
-
0018510292
-
Intensity distribution due to a partially coherent field and the Collett-Wolf equivalence theorem in the Fresnel zone
-
B. E. A. Saleh, “Intensity distribution due to a partially coherent field and the Collett-Wolf equivalence theorem in the Fresnel zone, ” Opt. Commun. 30, 135–138 (1979).
-
(1979)
Opt. Commun.
, vol.30
, pp. 135-138
-
-
Saleh, B.E.A.1
-
11
-
-
0018482797
-
An example of a Collett-Wolf source
-
P. D. Santis, F. Gori, G. Guattari, and C. Palma, “An example of a Collett-Wolf source, ” Opt. Commun. 29, 256260 (1979);.
-
(1979)
Opt. Commun.
, vol.29
, pp. 256-260
-
-
Santis, P.D.1
Gori, F.2
Guattari, G.3
Palma, C.4
-
12
-
-
0017949758
-
An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals
-
W. H. Carter and M. Bertolotti, “An analysis of the far-field coherence and radiant intensity of light scattered from liquid crystals, ” J. Opt. Soc. Am. 68, 329–333 (1978).
-
(1978)
J. Opt. Soc. Am.
, vol.68
, pp. 329-333
-
-
Carter, W.H.1
Bertolotti, M.2
-
13
-
-
0018014937
-
The directionality of Gaussian Schell-model beams
-
J. T. Foley and M. S. Zubairy, “The directionality of Gaussian Schell-model beams, ” Opt. Commun. 26, 297–300 (1978).
-
(1978)
Opt. Commun.
, vol.26
, pp. 297-300
-
-
Foley, J.T.1
Zubairy, M.S.2
-
14
-
-
0020126828
-
Propagation parameters of Gaussian Schell-model beams
-
A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams, ” Opt. Commun. 41, 383–387 (1982).
-
(1982)
Opt. Commun.
, vol.41
, pp. 383-387
-
-
Friberg, A.T.1
Sudol, R.J.2
-
15
-
-
0001135437
-
Wave optical analysis of the phase space analyzer
-
H. Weber, “Wave optical analysis of the phase space analyzer, ” J. Mod. Opt. 39, 543–559 (1992).
-
(1992)
J. Mod. Opt.
, vol.39
, pp. 543-559
-
-
Weber, H.1
-
16
-
-
0009823698
-
Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems
-
J. Serna, P. M. Mejias, and R. Martinez-Herrero, “Beam quality dependence on the coherence length of Gaussian Schell-model fields propagating through ABCD optical systems, ” J. Mod. Opt. 39, 625–635 (1992).
-
(1992)
J. Mod. Opt.
, vol.39
, pp. 625-635
-
-
Serna, J.1
Mejias, P.M.2
Martinez-Herrero, R.3
-
17
-
-
0000518338
-
The multimode laser radiation as a Gaussian Schell-model beam
-
R. Gase, “The multimode laser radiation as a Gaussian Schell-model beam, ” J. Mod. Opt. 38, 1107–1115 (1991).
-
(1991)
J. Mod. Opt.
, vol.38
, pp. 1107-1115
-
-
Gase, R.1
-
18
-
-
0026944510
-
-
R. Martinez-Herrero and P. M. Mejias, “Expansion of the cross-spectral density of general fields and its applications to beam characterization, ” Opt. Commun. 94, 197–202.
-
, vol.94
, pp. 197-202
-
-
Martinez-Herrero, R.1
Mejias, P.M.2
-
19
-
-
0028478908
-
Methods of quantum mechanics applied to partially coherent light beams
-
R. Gase, “Methods of quantum mechanics applied to partially coherent light beams, ” J. Opt. Soc. Am. A 11, 2121–2129 (1994).
-
(1994)
J. Opt. Soc. Am.
, vol.A11
, pp. 2121-2129
-
-
Gase, R.1
-
20
-
-
0027284610
-
Twisted Gaussian Schellmodel beams
-
R. Simon and N. Mukunda, “Twisted Gaussian Schellmodel beams, ” J. Opt. Soc. Am. A 10, 95–109 (1993).
-
(1993)
J. Opt. Soc. Am
, vol.A10
, pp. 95-109
-
-
Simon, R.1
Mukunda, N.2
-
21
-
-
0027652533
-
Twisted Gaussian Schell-model beams: I. Symmetry structure and normalmode spectrum
-
R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams: I. Symmetry structure and normalmode spectrum, ” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.A10
, pp. 2008-2016
-
-
Simon, R.1
Sundar, K.2
Mukunda, N.3
-
22
-
-
0027652513
-
-
K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams: II. Spectrum analysis and propagation characteristics, ” J. Opt. Soc. Am. A 10, 2017–2023.
-
, vol.A10
, pp. 2017-2023
-
-
Sundar, K.1
Simon, R.2
Mukunda, N.3
-
23
-
-
0028460223
-
-
A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams, ” J. Opt. Soc. Am. A 11, 1818–1826.
-
, vol.A11
, pp. 1818-1826
-
-
Friberg, A.T.1
Tervonen, E.2
Turunen, J.3
-
24
-
-
84946296454
-
Twisted Gaussian Schell-model beams: A superposition model
-
D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model, ” J. Mod. Opt. 41, 1391–1399 (1994).
-
(1994)
J. Mod. Opt.
, vol.41
, pp. 1391-1399
-
-
Ambrosini, D.1
Bagini, V.2
Gori, F.3
Santarsiero, M.4
-
25
-
-
0030134267
-
Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems
-
R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems, ” Pure Appl. Opt. 5, 331–343 (1996).
-
(1996)
Pure Appl. Opt.
, vol.5
, pp. 331-343
-
-
Simon, R.1
Friberg, A.T.2
Wolf, E.3
-
26
-
-
0020846244
-
A new type of optical fields
-
F. Gori and G. Guattari, “A new type of optical fields, ” Opt. Commun. 48, 7–12 (1983).
-
(1983)
Opt. Commun.
, vol.48
, pp. 7-12
-
-
Gori, F.1
Guattari, G.2
-
27
-
-
0001335710
-
Generalized rays in first order optics: Transformation properties of Gaussian Schell-model fields
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell-model fields, ” Phys. Rev. A 29, 3273–3279 (1984).
-
(1984)
Phys. Rev.
, vol.A29
, pp. 3273-3279
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
28
-
-
84975574694
-
Imaging of Gaussian Schellmodel sources
-
A. T. Friberg and J. Turunen, “Imaging of Gaussian Schellmodel sources, ” J. Opt. Soc. Am. A 5, 713–720 (1988).
-
(1988)
J. Opt. Soc. Am.
, vol.A5
, pp. 713-720
-
-
Friberg, A.T.1
Turunen, J.2
-
29
-
-
0023982773
-
Partially coherent beams and a generalized abcd-law
-
R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Partially coherent beams and a generalized abcd-law, ” Opt. Commun. 65, 322–328 (1988).
-
(1988)
Opt. Commun.
, vol.65
, pp. 322-328
-
-
Simon, R.1
Mukunda, N.2
Sudarshan, E.C.G.3
-
30
-
-
0003972403
-
-
Academic, New York, pp
-
S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces (Academic, New York, 1978), pp. 257–264, 401–407;.
-
(1978)
Differential Geometry, Lie Groups, and Symmetric Spaces
-
-
Helgason, S.1
-
31
-
-
84916282453
-
2(R)
-
Addison-Wesley, Reading, Mass
-
2(R) (Addison-Wesley, Reading, Mass., 1975), p. 83.
-
(1975)
, pp. 83
-
-
Lang, S.1
-
32
-
-
0027641018
-
Fourier transforms of fractional orders and their optical interpretation
-
H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional orders and their optical interpretation, ” Opt. Commun. 101, 163–169 (1993).
-
(1993)
Opt. Commun.
, vol.101
, pp. 163-169
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
33
-
-
0027652515
-
-
D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I, ” J. Opt. Soc. Am. A 10, 1875–1881 (1993);.
-
(1993)
, vol.A10
, pp. 1875-1881
-
-
Mendlovic, D.1
Ozaktas, H.M.2
-
34
-
-
0027740848
-
-
H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their optical implementation: II, ” J. Opt. Soc. Am. A 10, 2522–2531.
-
, vol.A10
, pp. 2522-2531
-
-
Ozaktas, H.M.1
Mendlovic, D.2
-
35
-
-
0027682286
-
Image rotation, Wigner rotation, and the fractional Fourier transform
-
A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform, ” J. Opt. Soc. Am. A 10, 2181–2186 (1993).
-
(1993)
J. Opt. Soc. Am.
, vol.A10
, pp. 2181-2186
-
-
Lohmann, A.W.1
-
36
-
-
0028483920
-
-
G. S. Agarwal and R. Simon, “A simple realization of fractional Fourier transformation and relation to harmonic oscillator Green’s function, ” Opt. Commun. 110, 23–26.
-
, vol.110
, pp. 23-26
-
-
Agarwal, G.S.1
Simon, R.2
-
37
-
-
0038246169
-
The two-dimensional symplectic and metaplectic groups and their universal cover
-
B. Gruber, ed. (Plenum, New York
-
R. Simon and N. Mukunda, “The two-dimensional symplectic and metaplectic groups and their universal cover, ” in Symmetries in Science VI, B. Gruber, ed. (Plenum, New York, 1993), pp. 659–689.
-
(1993)
Symmetries in Science VI
, pp. 659-689
-
-
Simon, R.1
Mukunda, N.2
-
38
-
-
0000552337
-
Formal quantum theory of light rays
-
D. Gloge and D. Marcuse, “Formal quantum theory of light rays, ” J. Opt. Soc. Am. 59, 1629–1631 (1969).
-
(1969)
J. Opt. Soc. Am.
, vol.59
, pp. 1629-1631
-
-
Gloge, D.1
Marcuse, D.2
-
39
-
-
84966030814
-
-
Van Nostrand Reinhold, New York, Chap. 3
-
D. Marcuse, Light Transmission Optics (Van Nostrand Reinhold, New York, 1972), Chap. 3.
-
(1972)
Light Transmission Optics
-
-
Marcuse, D.1
-
40
-
-
0020834596
-
Factorization of the transfer matrix for symmetrical optical systems
-
H. H. Arsenault and B. Macukow, “Factorization of the transfer matrix for symmetrical optical systems, ” J. Opt. Soc. Am. 73, 1350–1359 (1983);.
-
(1983)
J. Opt. Soc. Am
, vol.73
, pp. 1350-1359
-
-
Arsenault, H.H.1
Macukow, B.2
-
41
-
-
0020834878
-
Matrix decompositions for nonsymmetric optical systems
-
B. Macukow and H. H. Arsenault, “Matrix decompositions for nonsymmetric optical systems, ” J. Opt. Soc. Am. 73, 1360–1366 (1983).
-
(1983)
J. Opt. Soc. Am
, vol.73
, pp. 1360-1366
-
-
Macukow, B.1
Arsenault, H.H.2
-
42
-
-
0028546432
-
Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation
-
S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation, ” Opt. Lett. 19, 1801–1803 (1994);.
-
(1994)
Opt. Lett
, vol.19
, pp. 1801-1803
-
-
Abe, S.1
Sheridan, J.T.2
-
43
-
-
27644491636
-
Root and power transformations in optics
-
J. Shamir and N. Cohen, “Root and power transformations in optics, ” J. Opt. Soc. Am. A 12, 2415–2423 (1995).
-
(1995)
J. Opt. Soc. Am
, vol.A12
, pp. 2415-2423
-
-
Shamir, J.1
Cohen, N.2
-
44
-
-
0029277263
-
Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams
-
K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams, ” J. Opt. Soc. Am. A 12, 560–569 (1995).
-
(1995)
J. Opt. Soc. Am.
, vol.A12
, pp. 560-569
-
-
Sundar, K.1
Mukunda, N.2
Simon, R.3
-
45
-
-
0017934792
-
Is complete coherence necessary for the generation of highly directional light beams?
-
E. Collett and E. Wolf, “Is complete coherence necessary for the generation of highly directional light beams?” Opt. Lett. 2, 27–29 (1978).
-
(1978)
Opt. Lett.
, vol.2
, pp. 27-29
-
-
Collett, E.1
Wolf, E.2
-
46
-
-
0017974543
-
Partially coherent sources which produce the same intensity distribution as a laser
-
E. Wolf and E. Collett, “Partially coherent sources which produce the same intensity distribution as a laser, ” Opt. Commun. 25, 293–296 (1978).
-
(1978)
Opt. Commun.
, vol.25
, pp. 293-296
-
-
Wolf, E.1
Collett, E.2
-
47
-
-
0002633819
-
Radiation from anisotropic Gaussian Schell-model sources
-
Y. Li and E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources, ” Opt. Lett. 7, 256–258 (1982).
-
(1982)
Opt. Lett.
, vol.7
, pp. 256-258
-
-
Li, Y.1
Wolf, E.2
-
48
-
-
0010540443
-
Shapeinvariance range of a light beam
-
F. Gori, S. Vicalvi, M. Santarsiero, and R. Borghi, “Shapeinvariance range of a light beam, ” Opt. Lett. 21, 1205–1207 (1996).
-
(1996)
Opt. Lett.
, vol.21
, pp. 1205-1207
-
-
Gori, F.1
Vicalvi, S.2
Santarsiero, M.3
Borghi, R.4
-
49
-
-
0000750528
-
Anisotropic Gaussian Schell-model beams: Passage through optical systems and associated invariants
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell-model beams: passage through optical systems and associated invariants, ” Phys. Rev. A 31, 2419–2434 (1985).
-
(1985)
Phys. Rev.
, vol.A31
, pp. 2419-2434
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
|