메뉴 건너뛰기




Volumn 40, Issue 7, 1999, Pages 3632-3642

Congruences and canonical forms for a positive matrix: Application to the Schweinler-Wigner extremum principle

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0033243844     PISSN: 00222488     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.532913     Document Type: Article
Times cited : (96)

References (20)
  • 2
    • 0001316020 scopus 로고
    • J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
    • (1936) Am. J. Math. , vol.58 , pp. 141
    • Williamson, J.1
  • 3
    • 0009202657 scopus 로고
    • J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
    • (1936) Am. J. Math. , vol.59 , pp. 599
  • 4
    • 0002319788 scopus 로고
    • Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists
    • J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
    • (1936) Am. J. Math. , vol.61 , pp. 897
  • 5
    • 0003978095 scopus 로고
    • Springer, New York, Appendix 6.
    • J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
    • (1978) Mathematical Methods of Classical Mechanics
    • Arnold, V.I.1
  • 6
    • 84980072725 scopus 로고
    • J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
    • (1958) Commun. Pure Appl. Math. , vol.11 , pp. 81
    • Moser, J.1
  • 7
    • 0002378787 scopus 로고
    • J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
    • (1971) Bull. Am. Math. Soc. , vol.75 , pp. 814
    • Weinstein, A.1
  • 8
    • 0001252279 scopus 로고
    • J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
    • (1974) Celest. Mech. , vol.8 , pp. 435
    • Burgoyne, N.1    Cushman, R.2
  • 9
    • 0000105740 scopus 로고
    • J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
    • (1974) Celest. Mech. , vol.9 , pp. 213
    • Laub, J.1    Meyer, K.2
  • 10
  • 12
    • 4244042893 scopus 로고
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
    • (1987) Phys. Rev. A , vol.36 , pp. 3868
    • Simon, R.1    Sudarshan, E.C.G.2    Mukunda, N.3
  • 13
    • 0001679261 scopus 로고
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
    • (1994) Phys. Rev. A , vol.49 , pp. 1567
    • Simon, R.1    Mukunda, N.2    Dutta, B.3
  • 14
    • 4244042893 scopus 로고
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
    • (1995) J. Phys. , vol.45 , pp. 471
    • Arvind, B.D.1    Mukunda, N.2    Pramana, R.S.3
  • 15
    • 0038587471 scopus 로고
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
    • (1995) Phys. Rev. A , vol.52 , pp. 1609
    • Arvind, B.D.1    Mukunda, N.2    Simon, R.3
  • 18
    • 85033968637 scopus 로고    scopus 로고
    • note
    • 2⊗K, with K diagonal, is the canonical form for a real antisymmetric matrix under rotation. Further K can be chosen to be non-negative, in general, and positive definite when the antisymmetric matrix is nonsingular.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.