-
2
-
-
0001316020
-
-
J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
-
(1936)
Am. J. Math.
, vol.58
, pp. 141
-
-
Williamson, J.1
-
3
-
-
0009202657
-
-
J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
-
(1936)
Am. J. Math.
, vol.59
, pp. 599
-
-
-
4
-
-
0002319788
-
-
Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists
-
J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
-
(1936)
Am. J. Math.
, vol.61
, pp. 897
-
-
-
5
-
-
0003978095
-
-
Springer, New York, Appendix 6.
-
J. Williamson, Am. J. Math. 58, 141 (1936); 59, 599 (1936); 61, 897 (1936). Williamson's results are more general than the theorem quoted, and obtain all the different canonical forms a real symmetric (not necessarily positive definite) matrix can take under congruence by the real symplectic group. The results of Williamson are summarized in a manner that should appeal to physicists, in V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, New York, 1978), Appendix 6.
-
(1978)
Mathematical Methods of Classical Mechanics
-
-
Arnold, V.I.1
-
6
-
-
84980072725
-
-
J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
-
(1958)
Commun. Pure Appl. Math.
, vol.11
, pp. 81
-
-
Moser, J.1
-
7
-
-
0002378787
-
-
J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
-
(1971)
Bull. Am. Math. Soc.
, vol.75
, pp. 814
-
-
Weinstein, A.1
-
8
-
-
0001252279
-
-
J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
-
(1974)
Celest. Mech.
, vol.8
, pp. 435
-
-
Burgoyne, N.1
Cushman, R.2
-
9
-
-
0000105740
-
-
J. Moser, Commun. Pure Appl. Math. 11, 81 (1958); A. Weinstein, Bull. Am. Math. Soc. 75, 814 (1971); N. Burgoyne and R. Cushman, Celest. Mech. 8, 435 (1974); J. Laub and K. Meyer, ibid. 9, 213 (1974).
-
(1974)
Celest. Mech.
, vol.9
, pp. 213
-
-
Laub, J.1
Meyer, K.2
-
10
-
-
0000148310
-
-
A. J. Dragt, F. Neri, and G. Rangarajan, Phys. Rev. A 45, 2572 (1992); E. C. G. Sudarshan, C. B. Chiu, and G. Bhamathi, ibid. 52, 43 (1995).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 2572
-
-
Dragt, A.J.1
Neri, F.2
Rangarajan, G.3
-
11
-
-
0002586665
-
-
A. J. Dragt, F. Neri, and G. Rangarajan, Phys. Rev. A 45, 2572 (1992); E. C. G. Sudarshan, C. B. Chiu, and G. Bhamathi, ibid. 52, 43 (1995).
-
(1995)
Phys. Rev. A
, vol.52
, pp. 43
-
-
Sudarshan, E.C.G.1
Chiu, C.B.2
Bhamathi, G.3
-
12
-
-
4244042893
-
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 3868
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
13
-
-
0001679261
-
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 1567
-
-
Simon, R.1
Mukunda, N.2
Dutta, B.3
-
14
-
-
4244042893
-
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
-
(1995)
J. Phys.
, vol.45
, pp. 471
-
-
Arvind, B.D.1
Mukunda, N.2
Pramana, R.S.3
-
15
-
-
0038587471
-
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, Phys. Rev. A 36, 3868 (1987); R. Simon, N. Mukunda, and B. Dutta, ibid. 49, 1567 (1994); Arvind, B. Dutta, N. Mukunda, and R. Simon, Pramana, J. Phys. 45, 471 (1995); Arvind, B. Dutta, N. Mukunda, and R. Simon, Phys. Rev. A 52, 1609 (1995).
-
(1995)
Phys. Rev. A
, vol.52
, pp. 1609
-
-
Arvind, B.D.1
Mukunda, N.2
Simon, R.3
-
18
-
-
85033968637
-
-
note
-
2⊗K, with K diagonal, is the canonical form for a real antisymmetric matrix under rotation. Further K can be chosen to be non-negative, in general, and positive definite when the antisymmetric matrix is nonsingular.
-
-
-
|