-
1
-
-
0027284610
-
Twisted Gaussian Schell
-
R. Simon and N. Mukunda, “Twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 10, 95–109 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 95-109
-
-
Simon, R.1
Mukunda, N.2
-
2
-
-
0028460223
-
Interpretation and experimental demonstration of twisted Gaussian Schell-model beams
-
A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818–1826 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 1818-1826
-
-
Friberg, A.T.1
Tervonen, E.2
Turunen, J.3
-
3
-
-
84946296454
-
Twisted Gaussian Schell-model beams: A superposition model
-
D. Ambrosini, V. Bagini, F. Gori, and M. Santarsiero, “Twisted Gaussian Schell-model beams: a superposition model,” J. Mod. Opt. 41, 1391–1399 (1994).
-
(1994)
J. Mod. Opt
, vol.41
, pp. 1391-1399
-
-
Ambrosini, D.1
Bagini, V.2
Gori, F.3
Santarsiero, M.4
-
4
-
-
0027652533
-
Twisted Gaussian Schell-model beams. I. Symmetry structure and normal
-
R. Simon, K. Sundar, and N. Mukunda, “Twisted Gaussian Schell-model beams. I. Symmetry structure and normal-mode spectrum,” J. Opt. Soc. Am. A 10, 2008–2016 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2008-2016
-
-
Simon, R.1
Sundar, K.2
Mukunda, N.3
-
5
-
-
0027652513
-
Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics
-
K. Sundar, R. Simon, and N. Mukunda, “Twisted Gaussian Schell-model beams. II. Spectrum analysis and propagation characteristics,” J. Opt. Soc. Am. A 10, 2017–2023 (1993).
-
(1993)
J. Opt. Soc. Am. A
, vol.10
, pp. 2017-2023
-
-
Sundar, K.1
Simon, R.2
Mukunda, N.3
-
6
-
-
0030134267
-
Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems
-
R. Simon, A. T. Friberg, and E. Wolf, “Transfer of radiance by twisted Gaussian Schell-model beams in paraxial systems,” Pure Appl. Opt. 5, 331–343 (1996).
-
(1996)
Pure Appl. Opt
, vol.5
, pp. 331-343
-
-
Simon, R.1
Friberg, A.T.2
Wolf, E.3
-
8
-
-
25344431927
-
Gaussian pure states in quantum mechanics and the symplectic group
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian pure states in quantum mechanics and the symplectic group,” Phys. Rev. A 37, 3028–3038 (1988).
-
(1988)
Phys. Rev. A
, vol.37
, pp. 3028-3038
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
9
-
-
0028478908
-
Methods of quantum mechanics applied to partially coherent light beams
-
R. Gase, “Methods of quantum mechanics applied to partially coherent light beams,” J. Opt. Soc. Am. A 11, 2121–2129 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2121-2129
-
-
Gase, R.1
-
10
-
-
33745014742
-
On the quantum correction for thermody-namic equilibrium
-
E. P. Wigner, “On the quantum correction for thermody-namic equilibrium,” Phys. Rev. 40, 749–759 (1932).
-
(1932)
Phys. Rev
, vol.40
, pp. 749-759
-
-
Wigner, E.P.1
-
11
-
-
0017957904
-
The Wigner distribution function applied to optical signals and systems
-
M. J. Bastiaans, “The Wigner distribution function applied to optical signals and systems,” Opt. Commun. 25, 26–30 (1978)
-
(1978)
Opt. Commun
, vol.25
, pp. 26-30
-
-
Bastiaans, M.J.1
-
12
-
-
85010130011
-
Wigner distribution function and its application to first-order optics
-
M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
-
(1979)
J. Opt. Soc. Am
, vol.69
, pp. 1710-1716
-
-
Bastiaans, M.J.1
-
13
-
-
0020102107
-
First order systems—a canonical operator representation: Lossless systems
-
M. Nazarathy and J. Shamir, “First order systems—a canonical operator representation: lossless systems,” J. Opt. Soc. Am. 72, 356–364 (1982)
-
(1982)
J. Opt. Soc. Am
, vol.72
, pp. 356-364
-
-
Nazarathy, M.1
Shamir, J.2
-
14
-
-
0001332130
-
Realization of first order optical systems using thin lenses
-
E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realization of first order optical systems using thin lenses,” Opt. Acta 32, 855–872 (1985).
-
(1985)
Opt. Acta
, vol.32
, pp. 855-872
-
-
Sudarshan, E.C.G.1
Mukunda, N.2
Simon, R.3
-
15
-
-
0037908613
-
The metaplectic group and Fourier optics
-
H. Bacry and M. Cadilhac, “The metaplectic group and Fourier optics,” Phys. Rev. A 23, 2533–2536 (1981)
-
(1981)
Phys. Rev. A
, vol.23
, pp. 2533-2536
-
-
Bacry, H.1
Cadilhac, M.2
-
17
-
-
33645082904
-
The semiclassical evolution of wave packets
-
R. G. Littlejohn, “The semiclassical evolution of wave packets,” Phys. Rep. 138, 193–291 (1986)
-
(1986)
Phys. Rep
, vol.138
, pp. 193-291
-
-
Littlejohn, R.G.1
-
18
-
-
0038246169
-
The two-dimensional symplectic and metaplectic groups and their universal cover
-
B. Gruber, edPlenum, New York
-
R. Simon and N. Muk-unda, “The two-dimensional symplectic and metaplectic groups and their universal cover,” in Symmetries in Sci-ence, B. Gruber, ed. (Plenum, New York, 1993), Vol. VI, pp. 659–689
-
(1993)
Symmetries in Sci
, vol.6
, pp. 659-689
-
-
Simon, R.1
Muk-Unda, N.2
-
19
-
-
0000064372
-
Bargmann invariant and the geometry of the Gouy effect
-
R. Simon and N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880–883 (1993).
-
(1993)
Phys. Rev. Lett
, vol.70
, pp. 880-883
-
-
Simon, R.1
Mukunda, N.2
-
20
-
-
0000750528
-
Aniso-tropic Gaussian Schell-model beams: Passage through optical systems and associated invariants
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Aniso-tropic Gaussian Schell-model beams: passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419–2434 (1985).
-
(1985)
Phys. Rev. A
, vol.31
, pp. 2419-2434
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
21
-
-
0029277263
-
Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams
-
K. Sundar, N. Mukunda, and R. Simon, “Coherent-mode decomposition of general anisotropic Gaussian Schell-model beams,” J. Opt. Soc. Am. A 12, 560–569 (1995).
-
(1995)
J. Opt. Soc. Am. A
, vol.12
, pp. 560-569
-
-
Sundar, K.1
Mukunda, N.2
Simon, R.3
-
22
-
-
4244042893
-
Gaussian Wigner distributions in quantum mechanics and optics
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Gaussian Wigner distributions in quantum mechanics and optics,” Phys. Rev. A 36, 3868–3880 (1987).
-
(1987)
Phys. Rev. A
, vol.36
, pp. 3868-3880
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
23
-
-
0001679261
-
Quantum-noise matrix for multimode systems: U(n) invariance squeezing, and normal forms
-
R. Simon, N. Mukunda, and B. Dutta, “Quantum-noise matrix for multimode systems: U(n) invariance squeezing, and normal forms,” Phys. Rev. A 49, 1567–1583 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 1567-1583
-
-
Simon, R.1
Mukunda, N.2
Dutta, B.3
-
24
-
-
0029394298
-
Representation of Laguerre–Gaussian modes by the Wigner distribution function
-
R. Gase, “Representation of Laguerre–Gaussian modes by the Wigner distribution function,” IEEE J. Quantum Electron. 31, 1811–1818 (1995).
-
(1995)
IEEE J. Quantum Electron
, vol.31
, pp. 1811-1818
-
-
Gase, R.1
-
25
-
-
0028494082
-
Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (Anamorphic) optics
-
G. Nemes and A. E. Siegman, “Measurement of all ten second-order moments of an astigmatic beam by the use of rotating simple astigmatic (anamorphic) optics,” J. Opt. Soc. Am. A 11, 2257–2264 (1994).
-
(1994)
J. Opt. Soc. Am. A
, vol.11
, pp. 2257-2264
-
-
Nemes, G.1
Siegman, A.E.2
-
26
-
-
0018510292
-
Intensity distribution due to a partially coherent field and the Collett–Wolf equivalence theorem in the Fresnel zone
-
B. E. A. Saleh, “Intensity distribution due to a partially coherent field and the Collett–Wolf equivalence theorem in the Fresnel zone,” Opt. Commun. 30, 135–138 (1979)
-
(1979)
Opt. Commun
, vol.30
, pp. 135-138
-
-
Saleh, B.E.A.1
-
27
-
-
0018014937
-
The directionality of Gaussian Schell-model beams
-
J. T. Foley and M. S. Zubairy, “The directionality of Gaussian Schell-model beams,” Opt. Commun. 26, 297–300 (1978)
-
(1978)
Opt. Commun
, vol.26
, pp. 297-300
-
-
Foley, J.T.1
Zubairy, M.S.2
-
28
-
-
0020126828
-
Propagation parameters of Gaussian Schell-model beams
-
A. T. Friberg and R. J. Sudol, “Propagation parameters of Gaussian Schell-model beams,” Opt. Commun. 41, 383–387 (1982)
-
(1982)
Opt. Commun
, vol.41
, pp. 383-387
-
-
Friberg, A.T.1
Sudol, R.J.2
-
29
-
-
0017974543
-
Partially coherent sources which produce the same intensity distribution as a laser
-
E. Wolf and E. Collett, “Partially coherent sources which produce the same intensity distribution as a laser,” Opt. Commun. 25, 293–296 (1978)
-
(1978)
Opt. Commun
, vol.25
, pp. 293-296
-
-
Wolf, E.1
Collett, E.2
-
30
-
-
0001335710
-
Generalized rays in first order optics: Transformation properties of Gaussian Schell
-
R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first order optics: transformation properties of Gaussian Schell-model fields,” Phys. Rev. A 29, 3273–3279 (1984)
-
(1984)
Phys. Rev. A
, vol.29
, pp. 3273-3279
-
-
Simon, R.1
Sudarshan, E.C.G.2
Mukunda, N.3
-
31
-
-
0001135437
-
Wave optical analysis of the phase space analyzer
-
H. We-ber, “Wave optical analysis of the phase space analyzer,” J. Mod. Opt. 39, 543–559 (1992).
-
(1992)
J. Mod. Opt
, vol.39
, pp. 543-559
-
-
We-Ber, H.1
-
32
-
-
0002633819
-
Radiation from anisotropic Gaussian Schell-model sources
-
Y. Li and E. Wolf, “Radiation from anisotropic Gaussian Schell-model sources,” Opt. Lett. 7, 256–258 (1982).
-
(1982)
Opt. Lett
, vol.7
, pp. 256-258
-
-
Li, Y.1
Wolf, E.2
-
33
-
-
0020846244
-
A new type of optical fields
-
F. Gori and G. Guattari, “A new type of optical fields,” Opt. Commun. 48, 7–12 (1983).
-
(1983)
Opt. Commun
, vol.48
, pp. 7-12
-
-
Gori, F.1
Guattari, G.2
-
34
-
-
0009412617
-
ABCD law for partially coherent Gaussian light propagating through first-order optical systems
-
M. J. Bastiaans, “ABCD law for partially coherent Gaussian light propagating through first-order optical systems,” Opt. Quantum Electron. 24, 1011–1019 (1992).
-
(1992)
Opt. Quantum Electron
, vol.24
, pp. 1011-1019
-
-
Bastiaans, M.J.1
-
35
-
-
0020102586
-
New theory of partial coherence in the space
-
E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I. Spectra and cross-spectra of steady state sources,” J. Opt. Soc. Am. 72, 343–351 (1982)
-
(1982)
J. Opt. Soc. Am
, vol.72
, pp. 343-351
-
-
Wolf, E.1
-
36
-
-
0021425154
-
Coherence theory of laser reso
-
E. Wolf and G. S. Agarwal, “Coherence theory of laser reso-nator modes,” J. Opt. Soc. Am. A 1, 541–546 (1984).
-
(1984)
J. Opt. Soc. Am. A
, vol.1
, pp. 541-546
-
-
Wolf, E.1
Agarwal, G.S.2
-
37
-
-
0019064888
-
Collett–Wolf sources and multimode lasers
-
F. Gori, “Collett–Wolf sources and multimode lasers,” Opt. Commun. 34, 301–305 (1980)
-
(1980)
Opt. Commun
, vol.34
, pp. 301-305
-
-
Gori, F.1
-
38
-
-
0000518338
-
The multimode laser radiation as a Gaussian Schell-model beam
-
R. Gase, “The multimode laser radiation as a Gaussian Schell-model beam,” J. Mod. Opt. 38, 1107–1115 (1991)
-
(1991)
J. Mod. Opt
, vol.38
, pp. 1107-1115
-
-
Gase, R.1
-
39
-
-
0026944510
-
Expansion of the cross-spectral density of general fields and its applications to beam characterization
-
R. Martinez-Herrero and P. M. Mejias, “Expansion of the cross-spectral density of general fields and its applications to beam characterization,” Opt. Commun. 94, 197–202 (1992).
-
(1992)
Opt. Commun
, vol.94
, pp. 197-202
-
-
Martinez-Herrero, R.1
Mejias, P.M.2
-
40
-
-
0002839282
-
On angular momentum
-
L. C. Biedenharn and H. Van Dam, edsAcademic, New York
-
J. Schwinger, “On angular momentum,” in Quantum Theory of Angular Momentum, L. C. Biedenharn and H. Van Dam, eds. (Academic, New York, 1965), pp. 229–279.
-
(1965)
Quantum Theory of Angular Momentum
, pp. 229-279
-
-
Schwinger, J.1
-
41
-
-
0028444203
-
Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters
-
M. Selvadoray, M. Sanjay Kumar, and R. Simon, “Photon distribution in two-mode squeezed coherent states with complex displacement and squeeze parameters,” Phys. Rev. A 49, 4957–4967 (1994).
-
(1994)
Phys. Rev. A
, vol.49
, pp. 4957-4967
-
-
Selvadoray, M.1
Sanjay Kumar, M.2
Simon, R.3
-
42
-
-
0000328798
-
Analogies between two optical systems (photon beam splitters and laser beams) and two quantum systems (the two-dimensional oscillator and the two-dimensional hydrogen atom)
-
S. Danakas and P. K. Aravind, “Analogies between two optical systems (photon beam splitters and laser beams) and two quantum systems (the two-dimensional oscillator and the two-dimensional hydrogen atom),” Phys. Rev. A 45, 1973–1977 (1992).
-
(1992)
Phys. Rev. A
, vol.45
, pp. 1973-1977
-
-
Danakas, S.1
Aravind, P.K.2
|