메뉴 건너뛰기




Volumn 17, Issue 2, 2000, Pages 342-355

Structure of the set of paraxial optical systems

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; OPTICAL INSTRUMENTATION; OPTICS; THEORETICAL MODEL;

EID: 0034132255     PISSN: 10847529     EISSN: 15208532     Source Type: Journal    
DOI: 10.1364/JOSAA.17.000342     Document Type: Article
Times cited : (91)

References (33)
  • 1
    • 2942642546 scopus 로고
    • On the representations of Lie algebras
    • “On some types of topological groups,” Ann. Math. 50, 507-558 (1948)
    • K. Iwasawa, “On the representations of Lie algebras,” Jpn. J. Math. 19, 513-523 (1948); “On some types of topological groups,” Ann. Math. 50, 507-558 (1948).
    • (1948) Jpn. J. Math , vol.19 , pp. 513-523
    • Iwasawa, K.1
  • 2
    • 0001235633 scopus 로고
    • Irreducible unitary representations of the Lorentz group
    • “Grouprepresentation in Hilbert spaces of analytic functions,” in Analytical Methods in Mathematical Physics, P. Gilbert and R. G. Newton, eds. (Gordon & Breach, New York, 1970), pp. 27-63
    • V. Bargmann, “Irreducible unitary representations of the Lorentz group,” Ann. Math. 48, 568-640 (1947); “Grouprepresentation in Hilbert spaces of analytic functions,” in Analytical Methods in Mathematical Physics, P. Gilbert and R. G. Newton, eds. (Gordon & Breach, New York, 1970), pp. 27-63.
    • (1947) Ann. Math , vol.48 , pp. 568-640
    • Bargmann, V.1
  • 3
    • 0037570557 scopus 로고
    • The symplectic groups, their parametrization and cover
    • J. Sa´nchez-Mondrago´n and K. B. Wolf, Vol, of Lecture Notes in Physics (Springer-Verlag, Berlin, App. A, pp. 227-238; “Representations of the algebra sp(2, R),” pp. 239-247; reprinted in Dynamical Groups and Spectrum Generating Algebras, A. Barut, A. Bohm, and Y. Ne’eman, eds. (World Scientific, Singapore, 1989), pp. 1076-1087, 1088-1096
    • K. B. Wolf, “The symplectic groups, their parametrization and cover,” in Lie Methods in Optics, J. Sa´nchez-Mondrago´n and K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), App. A, pp. 227-238; “Representations of the algebra sp(2, R),” pp. 239-247; reprinted in Dynamical Groups and Spectrum Generating Algebras, A. Barut, A. Bohm, and Y. Ne’eman, eds. (World Scientific, Singapore, 1989), pp. 1076-1087, 1088-1096.
    • (1986) Lie Methods in Optics , vol.250
    • Wolf, K.B.1
  • 4
    • 0003437218 scopus 로고
    • See, e.g., (Addison-Wesley, Reading, Mass
    • See, e.g., H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, Mass., 1950).
    • (1950) Classical Mechanics
    • Goldstein, H.1
  • 5
    • 0027310025 scopus 로고
    • Iwasawa decomposition for SU(1, 1) and the Gouy effect for squeezed states
    • R. Simon and N. Mukunda, “Iwasawa decomposition for SU(1, 1) and the Gouy effect for squeezed states,” Opt. Commun. 95, 39-45 (1993).
    • (1993) Opt. Commun , vol.95 , pp. 39-45
    • Simon, R.1    Mukunda, N.2
  • 6
    • 0038246169 scopus 로고
    • The two-dimensional symplectic and metaplectic groups and their universal cover
    • V. B. Gruber, (Plenum, New York, G. S. Agarwal and R. Simon, “A simple realization of fractional Fourier transform and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23-26 (1994); K. Sundar, N. Mukunda, and R. Simon, “Coherent mode decomposition of general anisotropic Gaussian Schell model beams,” J. Opt. Soc. Am. A 12, 560-569 (1995); R. Simon and N. Mukunda, “Iwasawa decomposition in first order optics: Universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146-2155 (1998)
    • R. Simon and N. Mukunda, “The two-dimensional symplectic and metaplectic groups and their universal cover,” in Symmetries in Science, V. B. Gruber, ed. (Plenum, New York, 1993), pp. 659-689; G. S. Agarwal and R. Simon, “A simple realization of fractional Fourier transform and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23-26 (1994); K. Sundar, N. Mukunda, and R. Simon, “Coherent mode decomposition of general anisotropic Gaussian Schell model beams,” J. Opt. Soc. Am. A 12, 560-569 (1995); R. Simon and N. Mukunda, “Iwasawa decomposition in first order optics: Universal treatment of shape-invariant propagation for coherent and partially coherent beams,” J. Opt. Soc. Am. A 15, 2146-2155 (1998).
    • (1993) Symmetries in Science , pp. 659-689
    • Simon, R.1    Mukunda, N.2
  • 7
    • 0001679261 scopus 로고
    • Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms
    • R. Simon, N. Mukunda, and B. Dutta, “Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms,” Phys. Rev. A 49, 1567-1583 (1994).
    • (1994) Phys. Rev , vol.A49 , pp. 1567-1583
    • Simon, R.1    Mukunda, N.2    Dutta, B.3
  • 9
    • 0030145797 scopus 로고    scopus 로고
    • The generalized Fresnel transform and its application to optics
    • D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its application to optics,” Opt. Commun. 126, 207-212 (1996).
    • (1996) Opt. Commun , vol.126 , pp. 207-212
    • James, D.F.V.1    Agarwal, G.S.2
  • 10
    • 0027623650 scopus 로고
    • An experiment for the study of the Gouy effect for squeezed states
    • G. S. Agarwal and R. Simon, “An experiment for the study of the Gouy effect for squeezed states,” Opt. Commun. 100, 411-414 (1993).
    • (1993) Opt. Commun , vol.100 , pp. 411-414
    • Agarwal, G.S.1    Simon, R.2
  • 11
    • 0000064372 scopus 로고
    • Bargmann invariant and the geometry of the Gouy effect
    • R. Simon and N. Mukunda, “Bargmann invariant and the geometry of the Gouy effect,” Phys. Rev. Lett. 70, 880-883 (1993).
    • (1993) Phys. Rev. Lett , vol.70 , pp. 880-883
    • Simon, R.1    Mukunda, N.2
  • 12
    • 0001335710 scopus 로고
    • Generalized rays in first order optics: Transformation properties of Gaussian Schell model fields
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Generalized rays in first order optics: Transformation properties of Gaussian Schell model fields,” Phys. Rev. A 29, 3273-3279 (1984).
    • (1984) Phys. Rev , vol.A29 , pp. 3273-3279
    • Simon, R.1    Sudarshan, E.C.G.2    Mukunda, N.3
  • 13
    • 0027545704 scopus 로고
    • Squeezed states, photon number distribution, and U(1) invariance
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Partially coherent beams and a generalized abcd-law,” Opt. Commun. 65, 322-328 (1988)
    • B. Dutta, N. Mukunda, R. Simon, and A. Subramaniam, “Squeezed states, photon number distribution, and U(1) invariance,” J. Opt. Soc. Am. B 10, 253-264 (1993); R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Partially coherent beams and a generalized abcd-law,” Opt. Commun. 65, 322-328 (1988).
    • (1993) J. Opt. Soc. Am , vol.B10 , pp. 253-264
    • Dutta, B.1    Mukunda, N.2    Simon, R.3    Subramaniam, A.4
  • 14
    • 0000750528 scopus 로고
    • Anisotropic Gaussian Schell model beams: Passage through optical systems and associated invariants
    • Arvind, B. Dutta, N. Mukunda, and R. Simon, “Two-mode quantum systems: Invariant classification of squeezing transformations and squeezed states,” Phys. Rev. A 52, 1609-1620 (1995)
    • R. Simon, E. C. G. Sudarshan, and N. Mukunda, “Anisotropic Gaussian Schell model beams: Passage through optical systems and associated invariants,” Phys. Rev. A 31, 2419-2434 (1985); Arvind, B. Dutta, N. Mukunda, and R. Simon, “Two-mode quantum systems: invariant classification of squeezing transformations and squeezed states,” Phys. Rev. A 52, 1609-1620 (1995).
    • (1985) Phys. Rev , vol.A31 , pp. 2419-2434
    • Simon, R.1    Sudarshan, E.C.G.2    Mukunda, N.3
  • 15
    • 0001332130 scopus 로고
    • Realisation of first order optical systems using thin lenses
    • E. C. G. Sudarshan, N. Mukunda, and R. Simon, “Realisation of first order optical systems using thin lenses,” Opt. Acta 32, 855-872 (1985).
    • (1985) Opt. Acta , vol.32 , pp. 855-872
    • Sudarshan, E.C.G.1    Mukunda, N.2    Simon, R.3
  • 16
    • 0000320601 scopus 로고    scopus 로고
    • Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters
    • A. Sahin, H. M. Ozaktas, and D. Mendlovic, “Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters,” Appl. Opt. 37, 2130-2141 (1998).
    • (1998) Appl. Opt , vol.37 , pp. 2130-2141
    • Sahin, A.1    Ozaktas, H.M.2    Mendlovic, D.3
  • 17
    • 0027652515 scopus 로고
    • Fractional Fourier transforms and their implementations. I
    • H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their implementations. II,” J. Opt. Soc. Am. A 10, 2522-2531 (1993); “FractionalFourier transform of fractional order and their optical interpretation,” Opt. Commun. 101, 163-169 (1993); “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743-750 (1995); D. Mendlovic, Y. Bitran, R. G. Dorsch, and A. W. Lohmann, “Optical fractional correlation: Experimental results,” J. Opt. Soc. Am. A 12, 1665-1670 (1995)
    • D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their implementations. I,” J. Opt. Soc. Am. A 10, 1875-1881 (1993); H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transforms and their implementations. II,” J. Opt. Soc. Am. A 10, 2522-2531 (1993); “FractionalFourier transform of fractional order and their optical interpretation,” Opt. Commun. 101, 163-169 (1993); “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743-750 (1995); D. Mendlovic, Y. Bitran, R. G. Dorsch, and A. W. Lohmann, “Optical fractional correlation: Experimental results,” J. Opt. Soc. Am. A 12, 1665-1670 (1995).
    • (1993) J. Opt. Soc. Am , vol.A10 , pp. 1875-1881
    • Mendlovic, D.1    Ozaktas, H.M.2
  • 18
    • 27644491636 scopus 로고
    • Root and power transformations in optics
    • J. Shamir and N. Cohen, “Root and power transformations in optics,” J. Opt. Soc. Am. A 12, 2415-2423 (1995).
    • (1995) J. Opt. Soc. Am , vol.A12 , pp. 2415-2423
    • Shamir, J.1    Cohen, N.2
  • 19
    • 0007996778 scopus 로고
    • Hamiltons theory of turns generalized to Sp(2, R)
    • “The theory of screws—a new geometric representation for the group SU(1, 1),” J. Math. Phys. 30, 1000-1006 (1989)
    • R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Hamilton’s theory of turns generalized to Sp(2, R),” Phys. Rev. Lett. 62, 1331-1334 (1989); “The theory of screws—a new geometric representation for the group SU(1, 1),” J. Math. Phys. 30, 1000-1006 (1989).
    • (1989) Phys. Rev. Lett , vol.62 , pp. 1331-1334
    • Simon, R.1    Mukunda, N.2    Sudarshan, E.C.G.3
  • 20
    • 0004219860 scopus 로고
    • (Dublin, An excellent review of Hamilton’s theory of turns for SU(2) can be found in L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Mechanics, Vol. 8 of Encyclopedia of Mathematics and Its Applications (Addison-Wesley, Reading, Mass., 1881)
    • W. Hamilton, Lectures on Quaternions (Dublin, 1853). An excellent review of Hamilton’s theory of turns for SU(2) can be found in L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Mechanics, Vol. 8 of Encyclopedia of Mathematics and Its Applications (Addison-Wesley, Reading, Mass., 1881).
    • (1853) Lectures on Quaternions
    • Hamilton, W.1
  • 22
    • 0002951179 scopus 로고
    • The Wigner function and its optical production
    • H. O. Bartelt, K.-H. Brenner, and H. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32-38 (1980); H. Bartelt and K.-H. Brenner, “The Wigner distribution function: An alternate signal representation in optics,” Isr. J. Technol. 18, 260-262 (1980); K.-H. Brenner and H. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310-314 (1982)
    • A. Lohmann, “The Wigner function and its optical production,” Opt. Commun. 42, 32-37 (1980); H. O. Bartelt, K.-H. Brenner, and H. Lohmann, “The Wigner distribution function and its optical production,” Opt. Commun. 32, 32-38 (1980); H. Bartelt and K.-H. Brenner, “The Wigner distribution function: An alternate signal representation in optics,” Isr. J. Technol. 18, 260-262 (1980); K.-H. Brenner and H. Lohmann, “Wigner distribution function display of complex 1D signals,” Opt. Commun. 42, 310-314 (1982).
    • (1980) Opt. Commun , vol.42 , pp. 32-37
    • Lohmann, A.1
  • 23
    • 0027284610 scopus 로고
    • Twisted Gaussian Schell model beams
    • “Twist phase in Gaussian beam optics,” J. Opt. Soc. Am. A 15, 2373-2382 (1998)
    • R. Simon and N. Mukunda, “Twisted Gaussian Schell model beams,” J. Opt. Soc. Am. A 10, 95-109 (1993); “Twist phase in Gaussian beam optics,” J. Opt. Soc. Am. A 15, 2373-2382 (1998).
    • (1993) J. Opt. Soc. Am , vol.A10 , pp. 95-109
    • Simon, R.1    Mukunda, N.2
  • 24
    • 0028460223 scopus 로고
    • Interpretation and experimental demonstration of twisted Gaussian Schell-model beams
    • A. T. Friberg, E. Tervonen, and J. Turunen, “Interpretation and experimental demonstration of twisted Gaussian Schell-model beams,” J. Opt. Soc. Am. A 11, 1818-1826 (1994).
    • (1994) J. Opt. Soc. Am , vol.A11 , pp. 1818-1826
    • Friberg, A.T.1    Tervonen, E.2    Turunen, J.3
  • 25
    • 0010869715 scopus 로고
    • Hamiltons theory of turns and a new geometrical representation for polarization optics
    • R. Simon, N. Mukunda, and E. C. G. Sudarshan, “Hamilton’s theory of turns and a new geometrical representation for polarization optics,” Pramana J. Phys. 32, 769-792 (1989).
    • (1989) Pramana J. Phys , vol.32 , pp. 769-792
    • Simon, R.1    Mukunda, N.2    Sudarshan, E.C.G.3
  • 26
    • 0001543889 scopus 로고
    • Minimal three component SU(2) gadget for polarization optics
    • V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. S. Spagnolo, “The Simon-Mukunda polarization gadget,” Eur. J. Phys. 17, 279-284 (1996)
    • R. Simon and N. Mukunda, “Minimal three component SU(2) gadget for polarization optics,” Phys. Lett. A 143, 165-169 (1990); V. Bagini, R. Borghi, F. Gori, M. Santarsiero, F. Frezza, G. Schettini, and G. S. Spagnolo, “The Simon-Mukunda polarization gadget,” Eur. J. Phys. 17, 279-284 (1996).
    • (1990) Phys. Lett , vol.A143 , pp. 165-169
    • Simon, R.1    Mukunda, N.2
  • 28
    • 0038246226 scopus 로고
    • Oscillator systems
    • (Gordon & Breach, New York, 1974); M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representation,” J. Math. Phys. 12, 1772-1780 (1971); C. Quesne and M. Moshinsky, “Canonical transformations and matrix elements,” J. Math. Phys. 12, 1780-1783 (1971)
    • M. Moshinsky and C. Quesne, “Oscillator systems,” in Proceedings of the 15th Solvay Conference in Physics (1970) (Gordon & Breach, New York, 1974); M. Moshinsky and C. Quesne, “Linear canonical transformations and their unitary representation,” J. Math. Phys. 12, 1772-1780 (1971); C. Quesne and M. Moshinsky, “Canonical transformations and matrix elements,” J. Math. Phys. 12, 1780-1783 (1971).
    • (1970) Proceedings of the 15Th Solvay Conference in Physics
    • Moshinsky, M.1    Quesne, C.2
  • 29
    • 0038450087 scopus 로고
    • Canonical transforms for paraxial wave optics
    • J. Sánchez-Mondragón and K. B. Wolf, Vol, of Lecture Notes in Physics (Springer-Verlag, Berlin
    • O. Castaños, E. López-Moreno, and K. B. Wolf, “Canonical transforms for paraxial wave optics,” in Lie Methods in Optics, J. Sánchez-Mondragón and K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), pp. 159-182.
    • (1986) Lie Methods in Optics , vol.250 , pp. 159-182
    • Castaños, O.1    López-Moreno, E.2    Wolf, K.B.3
  • 30
    • 0039615415 scopus 로고
    • Foundations of a Lie algebraic theory of geometrical optics
    • J. Sánchez-Mondragón and K. B. Wolf, Vol, of Lecture Notes in Physics (Springer-Verlag, Berlin, Chap. 4
    • A. J. Dragt, E. Forest, and K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical optics,” in Lie Methods in Optics, J. Sánchez-Mondragón and K. B. Wolf, eds., Vol. 250 of Lecture Notes in Physics (Springer-Verlag, Berlin, 1986), Chap. 4, pp. 105-158.
    • (1986) Lie Methods in Optics , vol.250 , pp. 105-158
    • Dragt, A.J.1    Forest, E.2    Wolf, K.B.3
  • 31
    • 0043108034 scopus 로고
    • The group-theoretical treatment of aberrating systems. III. The classification of asymmetric aberrations
    • “Symmetryadapted classification of aberrations,” J. Opt. Soc. Am. A 5, 1226-1232 (1988)
    • K. B. Wolf, “The group-theoretical treatment of aberrating systems. III. The classification of asymmetric aberrations,” J. Math. Phys. 28, 2498-2507 (1987); “Symmetryadapted classification of aberrations,” J. Opt. Soc. Am. A 5, 1226-1232 (1988).
    • (1987) J. Math. Phys , vol.28 , pp. 2498-2507
    • Wolf, K.B.1
  • 32
    • 33745014742 scopus 로고
    • On the quantum correction for thermodynamic equilibrium
    • H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147-211 (1995)
    • E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749-759 (1932); H.-W. Lee, “Theory and application of the quantum phase-space distribution functions,” Phys. Rep. 259, 147-211 (1995).
    • (1932) Phys. Rev , vol.40 , pp. 749-759
    • Wigner, E.1
  • 33
    • 0038584828 scopus 로고    scopus 로고
    • On the phase space description of quantum nonlinear dynamics
    • A. L. Rivera, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, “Evolution under polynomial Hamiltonians in quantum and optical phase spaces,” Phys. Rev. A 55, 876-889 (1997)
    • N. M. Atakishiyev, S. M. Chumakov, A. L. Rivera, and K. B. Wolf, “On the phase space description of quantum nonlinear dynamics,” Phys. Lett. A 215, 128-134 (1996); A. L. Rivera, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, “Evolution under polynomial Hamiltonians in quantum and optical phase spaces,” Phys. Rev. A 55, 876-889 (1997).
    • (1996) Phys. Lett , vol.A215 , pp. 128-134
    • Atakishiyev, N.M.1    Chumakov, S.M.2    Rivera, A.L.3    Wolf, K.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.