-
1
-
-
0002294117
-
-
Simon, J. D., Ed.; Kluwer Academic: Netherlands, Chapter 13
-
See, e.g.: Hynes, J. T. In Ultrafast Dynamics of Chemical Systems; Simon, J. D., Ed.; Kluwer Academic: Netherlands, 1994; Chapter 13, p 345.
-
(1994)
Ultrafast Dynamics of Chemical Systems
, pp. 345
-
-
Hynes, J.T.1
-
2
-
-
0030218268
-
-
Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996, 100, 13148.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 13148
-
-
Barbara, P.F.1
Meyer, T.J.2
Ratner, M.A.3
-
5
-
-
0002729349
-
-
DeBoeij, W. P.; Pshenichnikov, M. S.; Wiersma, D. A. Annu. Rev. Phys. Chem. 1998, 49, 99 as well as refs 3 and 4.
-
(1998)
Annu. Rev. Phys. Chem.
, vol.49
, pp. 99
-
-
DeBoeij, W.P.1
Pshenichnikov, M.S.2
Wiersma, D.A.3
-
8
-
-
0042556159
-
-
For work using multiple photons to excite the CTTS band, see: Long, F. H.; Shi, X.; Lu, H.; Eisenthal, K. B. J. Phys. Chem. 1994, 98, 7252.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 7252
-
-
Long, F.H.1
Shi, X.2
Lu, H.3
Eisenthal, K.B.4
-
9
-
-
58149362363
-
-
Gauduel, Y.; Gelabart, H.; Ashokkumar, M. Chem. Phys. 1995, 197, 167 and references therein.
-
(1995)
Chem. Phys.
, vol.197
, pp. 167
-
-
Gauduel, Y.1
Gelabart, H.2
Ashokkumar, M.3
-
10
-
-
0011120523
-
-
A more modern study exciting directly into the CITS band with one photon is described in the following: Kloepfer, J. A.; Vilchiz, V. H.; Lenchenkov, V. A.; Bradforth, S. E. Chem. Phys. Lett. 1998, 298, 120.
-
(1998)
Chem. Phys. Lett.
, vol.298
, pp. 120
-
-
Kloepfer, J.A.1
Vilchiz, V.H.2
Lenchenkov, V.A.3
Bradforth, S.E.4
-
15
-
-
20544460499
-
-
Szasz. Gy. I.; Heinzinger, K.; Riede, W. O. Z. Naturforsch., Teil A 1981, 36, 1067.
-
(1981)
Z. Naturforsch., Teil A
, vol.36
, pp. 1067
-
-
Szasz, Gy.I.1
Heinzinger, K.2
Riede, W.O.3
-
17
-
-
0004219668
-
-
Harper & Row: New York
-
Tables of ionic radii and van der Waals radii for many small molecules can be found in most inorganic chemistry textbooks. See, e.g.: Huheey, J. E. Inorganic Chemistry, 3rd ed.; Harper & Row: New York, 1983.
-
(1983)
Inorganic Chemistry, 3rd Ed.
-
-
Huheey, J.E.1
-
18
-
-
0001429464
-
-
For recent examples of the use of dielectric continuum theories, see: Song, X. Y.; Chandler, D. J. Chem. Phys. 1998, 108, 2594.
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 2594
-
-
Song, X.Y.1
Chandler, D.2
-
19
-
-
36449000337
-
-
Nandi, N.; Roy, S.; Bagchi, B. J. Chem.. Phys. 1995, 102, 1390.
-
(1995)
J. Chem.. Phys.
, vol.102
, pp. 1390
-
-
Nandi, N.1
Roy, S.2
Bagchi, B.3
-
21
-
-
0000101017
-
-
Basilevsky, M. V.; Parsons, D. F.; Vener, M. V. J. Chem. Phys. 1998, 108, 1103.
-
(1998)
J. Chem. Phys.
, vol.108
, pp. 1103
-
-
Basilevsky, M.V.1
Parsons, D.F.2
Vener, M.V.3
-
22
-
-
0000474173
-
-
Viscoelastic continuum theories have been following a similar development to dielectric continuum theories. See, e.g.: Berg, M. Chem. Phys. Lett. 1994, 228, 317.
-
(1994)
Chem. Phys. Lett.
, vol.228
, pp. 317
-
-
Berg, M.1
-
25
-
-
0032002865
-
-
In their study of vibrational relaxation B. M. Ladanyi and R. M. Stratt (J. Phys. Chem. A 1998, 102, 1008) found that a single solvent molecule could dominate the entire influence spectrum for mechanical-like solvation.
-
(1998)
J. Phys. Chem. A
, vol.102
, pp. 1008
-
-
Ladanyi, B.M.1
Stratt, R.M.2
-
26
-
-
33646102263
-
-
Reynolds, L.; Gardecki, J. A.; Frankland, J. V.; Horng, M. L.; Maroncelli, M. J. Phys. Chem. 1996, 100, 10337. See also ref 25.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 10337
-
-
Reynolds, L.1
Gardecki, J.A.2
Frankland, J.V.3
Horng, M.L.4
Maroncelli, M.5
-
27
-
-
0011331151
-
-
In ref 13, for example, Berg estimates that the aromatic solvent used in his experiments changes size by 5-6%. A ∼10% size change is estimated for excited benzene in the following: Nowak, R.; Bernstein, E. R. J. Chem. Phys. 1987, 86, 4783. The references therein discuss size changes for other excited species. Of course, species which change oxidation state undergo even larger size changes which can be on the order of 20%; see ref 10.
-
(1987)
J. Chem. Phys.
, vol.86
, pp. 4783
-
-
Nowak, R.1
Bernstein, E.R.2
-
28
-
-
0001761172
-
-
Ma, J.; Vanden Bout, D. V.; Berg, M. J. Chem. Phys. 1995, 103, 9146.
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 9146
-
-
Ma, J.1
Vanden Bout, D.V.2
Berg, M.3
-
31
-
-
0031559101
-
-
See, e.g.: Stephens, M. D.; Saven J. G.; Skinner, J. L. J. Chem. Phys. 1997, 106, 2129;
-
(1997)
J. Chem. Phys.
, vol.106
, pp. 2129
-
-
Stephens, M.D.1
Saven, J.G.2
Skinner, J.L.3
-
40
-
-
0006824586
-
-
Ultrafast Reaction Dynamics and Solvent Effects; Gauduel, Y., Rossky, P. J., Eds.
-
For discussion of the inertial component of the solvent response and its Gaussian nature, see: Maroncelli, M.; Kumar, P. V.; Papazyan, A.; Horng, M. L.; Rosenthal, S. J.; Fleming, G. R. In Ultrafast Reaction Dynamics and Solvent Effects; Gauduel, Y., Rossky, P. J., Eds.; AIP Conf. Proc. 1994, 298, 310.
-
(1994)
AIP Conf. Proc.
, vol.298
, pp. 310
-
-
Maroncelli, M.1
Kumar, P.V.2
Papazyan, A.3
Horng, M.L.4
Rosenthal, S.J.5
Fleming, G.R.6
-
43
-
-
20544447366
-
-
Jimenez, R.; Fleming, G. R.; Papazyan, K.; Maroncelli, M. Nature 1994, 369, 411.
-
(1994)
Nature
, vol.369
, pp. 411
-
-
Jimenez, R.1
Fleming, G.R.2
Papazyan, K.3
Maroncelli, M.4
-
45
-
-
33751142600
-
-
Rosenthal, S. J.; Xie, X. L.; Du, M.; Fleming, G. R. J. Chem. Phys. 1991, 95, 4715.
-
(1991)
J. Chem. Phys.
, vol.95
, pp. 4715
-
-
Rosenthal, S.J.1
Xie, X.L.2
Du, M.3
Fleming, G.R.4
-
47
-
-
0000286431
-
-
For some background on INM's, see: Buchner, M.; Ladanyi, B. M.; Stratt, R. M. J. Chem. Phys. 1992, 97, 8522.
-
(1992)
J. Chem. Phys.
, vol.97
, pp. 8522
-
-
Buchner, M.1
Ladanyi, B.M.2
Stratt, R.M.3
-
52
-
-
0002775934
-
-
Pullman, B., Ed.; Reidel: Dodrecht
-
Berendsen, H. J. C.; Potsma, J. P. M.; van Gunsteren, W. F.; Hermans, J. In Intermolecular Forces; Pullman, B., Ed.; Reidel: Dodrecht, 1991, p 331.
-
(1991)
Intermolecular Forces
, pp. 331
-
-
Berendsen, H.J.C.1
Potsma, J.P.M.2
Van Gunsteren, W.F.3
Hermans, J.4
-
60
-
-
24244449060
-
-
See, e.g.: Hasted, J. B.; Husain, S. K.; Frescura, F. A. M.; Birch, J. R. Chem. Phys. Lett. 1985, 118, 622.
-
(1985)
Chem. Phys. Lett.
, vol.118
, pp. 622
-
-
Hasted, J.B.1
Husain, S.K.2
Frescura, F.A.M.3
Birch, J.R.4
-
61
-
-
0000918623
-
-
Castner, E. W.; Chang, Y. J.; Chu, Y. C.; Walrafen, G. E. J. Chem. Phys. 1995, 102, 653.
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 653
-
-
Castner, E.W.1
Chang, Y.J.2
Chu, Y.C.3
Walrafen, G.E.4
-
62
-
-
0031556975
-
-
Zolotov, B.; Gan, A.; Fainberg, B. D.; Huppert, D. Chem. Phys. Lett. 1997, 265, 418.
-
(1997)
Chem. Phys. Lett.
, vol.265
, pp. 418
-
-
Zolotov, B.1
Gan, A.2
Fainberg, B.D.3
Huppert, D.4
-
63
-
-
33751157237
-
-
Palese, S.; Schilling, L.; Miller, R. J. D.; Staver, P. R. J. Phys. Chem. 1994, 98, 6308.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 6308
-
-
Palese, S.1
Schilling, L.2
Miller, R.J.D.3
Staver, P.R.4
-
66
-
-
0028405185
-
-
Sastry, S.; Stanley, H. E.; Sciortino, F. J. Chem. Phys. 1994, 100, 5361.
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 5361
-
-
Sastry, S.1
Stanley, H.E.2
Sciortino, F.3
-
68
-
-
0005538815
-
-
Cho, M.; Fleming, G. R.; Saito, S.; Ohmine, I.; Stratt, R. M. J. Chem. Phys. 1994, 100, 6672.
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 6672
-
-
Cho, M.1
Fleming, G.R.2
Saito, S.3
Ohmine, I.4
Stratt, R.M.5
-
69
-
-
4243841464
-
-
Note that an alternative method to investigate the influence spectrum would be to use the INM formalism, which was applied to water in ref 42. We note, however, that the spectrum of INM's depends strongly on the choice of molecular coordinates used to define translational versus rotational solvent motions. See: Li, W.-X.; Keyes, T.; Murry, R. L.; Fourkas, J. T. J. Chem. Phys. 1998, 109, 9096.
-
(1998)
J. Chem. Phys.
, vol.109
, pp. 9096
-
-
Li, W.-X.1
Keyes, T.2
Murry, R.L.3
Fourkas, J.T.4
-
70
-
-
20544445800
-
-
in press
-
Murry, R. L.; Fourkas, J. T.; Li, W.-X.; Keyes, T. J. Phys. Chem., in press. Because of the additional problems inherent in defining rotational and translational projection operators for the flexible model of water used here, we have elected not to use INM's in our analysis.
-
J. Phys. Chem.
-
-
Murry, R.L.1
Fourkas, J.T.2
Li, W.-X.3
Keyes, T.4
-
72
-
-
33748613506
-
-
Walhout, P. K.; Silva, C.; Barbara, P. F. J. Phys. Chem. 1996, 100, 5188.
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 5188
-
-
Walhout, P.K.1
Silva, C.2
Barbara, P.F.3
-
73
-
-
20544478512
-
-
note
-
A simple Gaussian '94 calculation of Coumarin 343 is consistent with a 10-15% increase in the radius of the excited state electron density at some locations in the molecule. The shape change is not very spherical (especially given the planar nature of the molecule), but with the similarity in the response functions between the quadrupolar and spherical shape changes seen in Figure 6, use of a spherical shape change in the MD simulations should still capture the essence of the perturbation.
-
-
-
-
74
-
-
0000449422
-
-
The effects of solute polarizability on solvation dynamics have recently been explored. See, e.g.: Kim, H. J. J. Chem. Phys. 1996, 105, 6818.
-
(1996)
J. Chem. Phys.
, vol.105
, pp. 6818
-
-
Kim, H.J.1
-
77
-
-
20544463776
-
-
note
-
It is worth noting that the situation is different for the solvent response following nonadiabatic relaxation of the hydrated electron. The radiationless transition to the ground state causes the two-lobed electron wave function to collapse into a single lobe in only a few femtoseconds (ref 21), a situation much more akin to the size/shape changes studied here. The way in which dielectric and mechanical solvation couple for this type of solute perturbation and the inherent nonlinearity of the solvent response will be explored in more detail in ref 48.
-
-
-
|