-
4
-
-
0002627110
-
-
edited by M. P. Allen and D. J. Tildesely Kluwer Academic, Dodrecht
-
D. F. Coker, in Computer Simulations in Chemical Physics, edited by M. P. Allen and D. J. Tildesely (Kluwer Academic, Dodrecht, 1993), p. 315.
-
(1993)
Computer Simulations in Chemical Physics
, pp. 315
-
-
Coker, D.F.1
-
5
-
-
3843142910
-
-
J. Schnitker, K. Motakabbir, P. J. Rossky, and R. A. Friesner, Phys. Rev. Lett. 60, 456 (1988).
-
(1988)
Phys. Rev. Lett.
, vol.60
, pp. 456
-
-
Schnitker, J.1
Motakabbir, K.2
Rossky, P.J.3
Friesner, R.A.4
-
15
-
-
12044251103
-
-
E. Neria, A. Nitzan, R. N. Bamett, and U. Landman, Phys. Rev. Lett. 67, 1011 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.67
, pp. 1011
-
-
Neria, E.1
Nitzan, A.2
Bamett, R.N.3
Landman, U.4
-
19
-
-
4243952742
-
-
F. A. Webster, J. Schnitker, M. S. Friedrichs, R. A. Friesner, and P. J. Rossky, Phys. Rev. Lett. 33, 3172 (1991).
-
(1991)
Phys. Rev. Lett.
, vol.33
, pp. 3172
-
-
Webster, F.A.1
Schnitker, J.2
Friedrichs, M.S.3
Friesner, R.A.4
Rossky, P.J.5
-
21
-
-
0000798199
-
-
E. Keszei, S. Nagy, T. H. Murphrey, and P. J. Rossky, J. Chem. Phys. 99, 2004 (1993).
-
(1993)
J. Chem. Phys.
, vol.99
, pp. 2004
-
-
Keszei, E.1
Nagy, S.2
Murphrey, T.H.3
Rossky, P.J.4
-
24
-
-
0002663497
-
-
F. Long, H. Lu, X. Shi, and K. B. Eisenthal, Chem. Phys. Lett. 185, 47 (1991).
-
(1991)
Chem. Phys. Lett.
, vol.185
, pp. 47
-
-
Long, F.1
Lu, H.2
Shi, X.3
Eisenthal, K.B.4
-
25
-
-
4244068247
-
-
A. Migus, Y. Gauduel, J.-L. Martin, and A. Antonetti, Phys. Rev. Lett. 58, 1559 (1987).
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 1559
-
-
Migus, A.1
Gauduel, Y.2
Martin, J.-L.3
Antonetti, A.4
-
26
-
-
22244449358
-
-
Y. Gauduel, S. Pommeret, A. Migus, and A. Antonetti, J. Phys. Chem. 95, 533 (1991).
-
(1991)
J. Phys. Chem.
, vol.95
, pp. 533
-
-
Gauduel, Y.1
Pommeret, S.2
Migus, A.3
Antonetti, A.4
-
27
-
-
0027575070
-
-
J. C. Alfano, P. K. Walhout, Y. Kimura, and P. F. Barbara, J. Chem. Phys. 98, 5996 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 5996
-
-
Alfano, J.C.1
Walhout, P.K.2
Kimura, Y.3
Barbara, P.F.4
-
28
-
-
33748526746
-
-
Y. Kimura, J. C. Alfano, P. K. Walhout, and P. F. Barbara, J. Phys. Chem. 98, 3450 (1994).
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 3450
-
-
Kimura, Y.1
Alfano, J.C.2
Walhout, P.K.3
Barbara, P.F.4
-
30
-
-
0001679372
-
-
P. J. Reid, C. Silva, P. K. Walhout, and P. F. Barbara, Chem. Phys. Lett. 228, 658 (1994).
-
(1994)
Chem. Phys. Lett.
, vol.228
, pp. 658
-
-
Reid, P.J.1
Silva, C.2
Walhout, P.K.3
Barbara, P.F.4
-
32
-
-
36448999802
-
-
F. Webster, E. T. Wang, P. J. Rossky, and R. A. Friesner, J. Chem. Phys. 100, 4835 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 4835
-
-
Webster, F.1
Wang, E.T.2
Rossky, P.J.3
Friesner, R.A.4
-
33
-
-
0030126484
-
-
B. J. Schwartz, E. R. Bittner, O. V. Prezhdo, and P. J. Rossky, J. Chem. Phys. 104, 5942 (1996).
-
(1996)
J. Chem. Phys.
, vol.104
, pp. 5942
-
-
Schwartz, B.J.1
Bittner, E.R.2
Prezhdo, O.V.3
Rossky, P.J.4
-
36
-
-
85033069579
-
-
note
-
Note that the calculated equilibrium absorption spectrum is blueshifted by ≥0.5 eV from the experimental one, a result likely due to the lack of inclusion of electronic polarizability of the solvent (see, e.g., Ref. 18). In previous work, we subtracted this shift in the equilibrium spectrum when comparing the experimental and calculated nonequilibrium spectral transients. In the present work, all spectral calculations are presented without this shift taken into account, directly as computed during the simulations.
-
-
-
-
37
-
-
85033035142
-
-
note
-
2O, we expected rapid equilibration following the nonadiabatic relaxation and elected to save computational resources by terminating trajectories 0.5 ps after the radiationless transition. A posteriori justification for this assumption is provided in Fig. 6.
-
-
-
-
45
-
-
85033048359
-
-
1/2. This is likely the result of significant translation-rotation coupling
-
1/2. This is likely the result of significant translation-rotation coupling.
-
-
-
-
46
-
-
0009522723
-
-
See, e.g., G. S. Delbuono, P. J. Rossky, and J. Schnitker, J. Chem. Phys. 95, 3728 (1991).
-
(1991)
J. Chem. Phys.
, vol.95
, pp. 3728
-
-
Delbuono, G.S.1
Rossky, P.J.2
Schnitker, J.3
-
49
-
-
24244449060
-
-
See., e.g., J. B. Hasted, S. K. Husain, F. A. M. Frescura, and J. R. Birch, Chem. Phys. Lett. 118, 622 (1985).
-
(1985)
Chem. Phys. Lett.
, vol.118
, pp. 622
-
-
Hasted, J.B.1
Husain, S.K.2
Frescura, F.A.M.3
Birch, J.R.4
-
51
-
-
0000918623
-
-
and references therein
-
E. W. Castner, Y. J. Chang, Y. C. Chu, and G. E. Walrafen, J. Chem. Phys. 102, 653 (1995), and references therein.
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 653
-
-
Castner, E.W.1
Chang, Y.J.2
Chu, Y.C.3
Walrafen, G.E.4
-
52
-
-
85033048809
-
-
private communication
-
R. D. J. Miller (private communication).
-
-
-
Miller, R.D.J.1
-
55
-
-
85033040975
-
-
unpublished data
-
A calculation of the resonance Raman spectrum of the hydrated electron also bears this out: resonance enhancement is seen only for the low frequency, intermolecular solvent motions. W. B. Bosnia, B. J. Schwartz and P. J. Rossky (unpublished data).
-
-
-
Bosnia, W.B.1
Schwartz, B.J.2
Rossky, P.J.3
-
57
-
-
85033069997
-
-
note
-
It would be interesting, for example, to compare the solvation dynamics resulting from exciting a neutral-to-singly charged atomic species as explored in Ref. 56 and those resulting from excitation of a singly charged to doubly charged species. In the latter case, the orientation of the solvent is already nearly optimal for the doubly charged species, so most of the solvation should result from a slight inward collapse of the first solvation shell due to the enhanced Coulomb attraction. For this case, there would be no symmetry change to the charge distribution and hence, negligible reorientational motion in the solvent relaxation.
-
-
-
-
59
-
-
85033065435
-
-
Note that for the hydrated electron and idealized state symmetry, the leading order change in charge distribution would be the quadrupole; see Ref. 7
-
Note that for the hydrated electron and idealized state symmetry, the leading order change in charge distribution would be the quadrupole; see Ref. 7.
-
-
-
-
63
-
-
0004030856
-
-
Ultrnfast Reaction Dynamics and Solvent Effects, edited by Y. Gauduel and P. J. Rossky
-
M. Maroncelli, P. V. Kumar, A. Papazyan, M. L. Horng, S. J. Rosenthal, and G. R. Fleming, in Ultrnfast Reaction Dynamics and Solvent Effects, edited by Y. Gauduel and P. J. Rossky [AIP Conf. Proc. 298, 310 (1994)].
-
(1994)
AIP Conf. Proc.
, vol.298
, pp. 310
-
-
Maroncelli, M.1
Kumar, P.V.2
Papazyan, A.3
Horng, M.L.4
Rosenthal, S.J.5
Fleming, G.R.6
-
66
-
-
85033042635
-
-
This is not in accord with the "standard picture" of solvation, which holds that rotational motions of individual first shell solvent molecules dominate the early time solvent response
-
This is not in accord with the "standard picture" of solvation, which holds that rotational motions of individual first shell solvent molecules dominate the early time solvent response.
-
-
-
-
67
-
-
0028214347
-
-
R. Jimenez, G. R. Fleming, K. Papazyan, and M. Maroncelli, Nature 369, 471 (1994).
-
(1994)
Nature
, vol.369
, pp. 471
-
-
Jimenez, R.1
Fleming, G.R.2
Papazyan, K.3
Maroncelli, M.4
-
68
-
-
0025671402
-
-
P. F. Barbara, G. C. Walker, T. J. Kang, and W. Jarzeba, Proc. SPIE 1209, 18 (1990).
-
(1990)
Proc. SPIE
, vol.1209
, pp. 18
-
-
Barbara, P.F.1
Walker, G.C.2
Kang, T.J.3
Jarzeba, W.4
-
70
-
-
33751157393
-
-
We note that caution is warranted when extrapolating from OKE data, which reflects the solvent polarizability, to solvation dynamics, which depends on the solvent polarization. See, e.g., H. P. Deuel, P. J. Cong, and J. D. Simon, J. Phys. Chem. 98, 12600 (1994).
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 12600
-
-
Deuel, H.P.1
Cong, P.J.2
Simon, J.D.3
-
71
-
-
36449008509
-
-
H. Pal, Y. Nagasawa, K. Tominaga, S. Kumazaki, and K. Yoshihara, J. Chem. Phys. 102, 7758 (1995).
-
(1995)
J. Chem. Phys.
, vol.102
, pp. 7758
-
-
Pal, H.1
Nagasawa, Y.2
Tominaga, K.3
Kumazaki, S.4
Yoshihara, K.5
-
72
-
-
0000131335
-
-
A different model, in which nonadiabatic relaxation happens rapidly while the gap is large and significant relaxation then takes place on the ground state is consistent with the behavior of solvated electrons in alcohols: see P. K. Walhout, J. C. Alfano, Y. Kimura, C. Silva, and P. F. Barbara, Chem. Phys. Lett. 232, 135 (1995).
-
(1995)
Chem. Phys. Lett.
, vol.232
, pp. 135
-
-
Walhout, P.K.1
Alfano, J.C.2
Kimura, Y.3
Silva, C.4
Barbara, P.F.5
-
74
-
-
85033034869
-
-
note
-
By linear response, we mean simply that the regression of fluctuations at equilibrium is the same as the relaxation following an external perturbation. Thus, it is possible for both the upwards and downwards transitions to follow linear response, even though the two responses are dissimilar, since the final equilibrium fluctuations in the excited state can be different from the initial equilibrium fluctuations in the ground state.
-
-
-
-
83
-
-
85033061701
-
-
note
-
2O transients due to the error in choice of quantum decoherence time actually agree better with the experimental results.
-
-
-
|