메뉴 건너뛰기




Volumn 100, Issue 31, 1996, Pages 12981-12996

Nonreactive dynamics in solution: The emerging molecular view of solvation dynamics and vibrational relaxation

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMICS; MOLECULAR DYNAMICS; PHYSICAL CHEMISTRY; RELAXATION PROCESSES; SOLUBILITY;

EID: 0030217515     PISSN: 00223654     EISSN: None     Source Type: Journal    
DOI: 10.1021/jp9608483     Document Type: Article
Times cited : (617)

References (189)
  • 2
    • 0003625787 scopus 로고
    • Hansen, J. P., Levesque, D., Zinn-Justin, J., Eds.; North-Holland: Amsterdam
    • For a more recent review, see: Madden, P. A. In Liquids, Freezing, and the Glass Transition; Hansen, J. P., Levesque, D., Zinn-Justin, J., Eds.; North-Holland: Amsterdam, 1991.
    • (1991) Liquids, Freezing, and the Glass Transition
    • Madden, P.A.1
  • 4
    • 0011005925 scopus 로고
    • Barnes, A. J., Orville-Thomas, W. J., Yarwood, J., Eds.; Reidel: Dordrecht
    • Molecular Liquids. Dynamics and Interactions; Barnes, A. J., Orville-Thomas, W. J., Yarwood, J., Eds.; Reidel: Dordrecht, 1984.
    • (1984) Molecular Liquids. Dynamics and Interactions
  • 5
    • 4143150960 scopus 로고
    • Steele, D., Yarwood, J., Eds.; Elsevier: Amsterdam
    • Indeed, modern frequency domain techniques continue to teach us much about the dynamics of liquids. Some recent reviews include: Spectroscopy and Relaxation of Molecular Liquids; Steele, D., Yarwood, J., Eds.; Elsevier: Amsterdam, 1991; pp 174-273.
    • (1991) Spectroscopy and Relaxation of Molecular Liquids , pp. 174-273
  • 27
    • 0010148429 scopus 로고
    • An overview of the dephasing of electronic transitions and of optical photon echoes is given by: Nibbering, E. T. J.; Wiersma, D. A.; Duppen, K. Chem. Phys. 1994, 183, 167.
    • (1994) Chem. Phys. , vol.183 , pp. 167
    • Nibbering, E.T.J.1    Wiersma, D.A.2    Duppen, K.3
  • 34
    • 36448999355 scopus 로고
    • It might be mentioned, though, that the somewhat more sophisticated, heterodyned, version of optical Kerr effect spectroscopy discussed in ref 21 seems to lend itself nicely to physical interpretation. Some more recent applications and developments include: Chang, Y. J.; Castner, E. W., Jr. J. Chem. Phys. 1993, 99, 113, 7289.
    • (1993) J. Chem. Phys. , vol.99 , pp. 113
    • Chang, Y.J.1    Castner Jr., E.W.2
  • 36
    • 0001447953 scopus 로고
    • Moreover, recent theoretical studies of optical Kerr spectra have pointed out some close connections between these spectra and solvation dynamics: Ladanyi, B. M.; Liang, Y. Q. J. Chem. Phys. 1995, 103, 6325.
    • (1995) J. Chem. Phys. , vol.103 , pp. 6325
    • Ladanyi, B.M.1    Liang, Y.Q.2
  • 39
    • 36449007809 scopus 로고
    • Jimenez, R.; et al. (ref 14) and
    • See for example: Jimenez, R.; et al. (ref 14) and Muino, P. L.; Callis, P. R. J. Chem. Phys. 1994, 100, 4093.
    • (1994) J. Chem. Phys. , vol.100 , pp. 4093
    • Muino, P.L.1    Callis, P.R.2
  • 41
    • 0002342881 scopus 로고
    • State-of-the-art simulations of vibrational relaxation can have difficulties reproducing experimental results quantitatively because of, among other matters, extreme sensitivity to the details of the solution-phase interactions. Some recent efforts at making direct connections with experimental relaxation data include: Benjamin, I.; Whitnell, R. M. Chem. Phys. Lett. 1993, 204, 45.
    • (1993) Chem. Phys. Lett. , vol.204 , pp. 45
    • Benjamin, I.1    Whitnell, R.M.2
  • 52
    • 0002906948 scopus 로고
    • The so-called isolated binary collision (or isolated binary interaction) model for vibrational population relaxation in liquids can be written in a number of different guises, depending on how literally some of its tenets are taken. At its most literal, only equilibrium information about the solution is required. The basic ideas are reviewed in: Chesnoy, J.; Gale, G. M. Adv. Chem. Phys. 1988, 70 (part 2), 297.
    • (1988) Adv. Chem. Phys. , vol.70 , Issue.2 PART , pp. 297
    • Chesnoy, J.1    Gale, G.M.2
  • 53
    • 0004215566 scopus 로고
    • Prentice-Hall: Englewood Cliffs, NJ, Chapters 12 and 14
    • The basic features of Langevin equations and the formal approach by which one can develop generalized Langevin equations are reviewed by: Friedman, H. L. A Course in Statistical Mechanics; Prentice-Hall: Englewood Cliffs, NJ, 1985; Chapters 12 and 14.
    • (1985) A Course in Statistical Mechanics
    • Friedman, H.L.1
  • 54
    • 0039697318 scopus 로고
    • The requisite ingredients have long been available from simulation in solid-state examples. Vibrational relaxation in solid matrices, for example, was studied by: Shugard, M.; Tully, J. C.; Nitzan, A. J. Chem. Phys. 1978, 69, 336.
    • (1978) J. Chem. Phys. , vol.69 , pp. 336
    • Shugard, M.1    Tully, J.C.2    Nitzan, A.3
  • 63
    • 0027235293 scopus 로고
    • Martin, L.-J., Migus, A., Mourou, G. A., Zewail, A. H., Eds.; Springer-Verlag: Berlin
    • Electronic excitation is not the only way to prepare nonequilibrium electronic states on an ultrafast time scale. One can also attempt create a "new" solute either as a product of a photoinduced reaction [Ernsting, N. P. In Ultrafast Phenomena VIII; Martin, L.-J., Migus, A., Mourou, G. A., Zewail, A. H., Eds.; Springer-Verlag: Berlin, 1993; pp 638-640] or via electron injection into a pure solvent or solution. In the photoinduced case, one produces a brand new solute, the electron, whose solvation dynamics can be monitored spectroscopically, as will be discussed later. In the case of electron injection into solutions, one can use the fact that electrons will attach themselves rapidly to preexisting solutes (such as benzophenone, ref 47) and thereby create a negative ion, whose solvation can be observed spectroscopically.
    • (1993) Ultrafast Phenomena VIII , pp. 638-640
    • Ernsting, N.P.1
  • 66
    • 85033063776 scopus 로고    scopus 로고
    • Joo, T.; Jia, Y.; Fleming, G. R. Reference 10
    • (b) Joo, T.; Jia, Y.; Fleming, G. R. Reference 10.
  • 70
    • 85033070832 scopus 로고    scopus 로고
    • Cong, P.; Yan, Y. J.; Deuel, H. P.; Simon, J. D. Reference 9
    • (f) Cong, P.; Yan, Y. J.; Deuel, H. P.; Simon, J. D. Reference 9.
  • 72
    • 33751271923 scopus 로고
    • Reviews of time-resolved emission studies of solvation dynamics are: Maroncelli, M. J. Mol. Liq. 1993, 57, 1.
    • (1993) J. Mol. Liq. , vol.57 , pp. 1
    • Maroncelli, M.1
  • 74
    • 0000248635 scopus 로고
    • and ref 44
    • The ground state population can be followed by time-resolved absorption spectroscopy, which is typically referred to as "dynamic hole burning spectroscopy" in this context. See for example: Murakami, H.; Kinoshita, S.; Hirata, Y.; Okada, T.; Mataga, N. J. Chem. Phys. 1992, 97, 7881 and ref 44.
    • (1992) J. Chem. Phys. , vol.97 , pp. 7881
    • Murakami, H.1    Kinoshita, S.2    Hirata, Y.3    Okada, T.4    Mataga, N.5
  • 75
    • 36449009157 scopus 로고
    • Closely related are measurements using stimulated rather than spontaneous emission, for example: Bingemann, D.; Ernsting, N. P. J. Chem. Phys. 1995, 102, 2691.
    • (1995) J. Chem. Phys. , vol.102 , pp. 2691
    • Bingemann, D.1    Ernsting, N.P.2
  • 82
    • 0003433025 scopus 로고
    • Simon, J. D., Ed.; Kluwer Academic Publishers: Dordrecht
    • Lin, Y.; Jonah, C. D. In Ultrafast Dynamics of Chemical Systems; Simon, J. D., Ed.; Kluwer Academic Publishers: Dordrecht, 1994; pp 137-162.
    • (1994) Ultrafast Dynamics of Chemical Systems , pp. 137-162
    • Lin, Y.1    Jonah, C.D.2
  • 86
    • 0000554113 scopus 로고
    • Jarzeba, W.; Walker, G. C.; Johnson, A. E.; Barbara, P. F. Reference 9
    • Jarzeba, W.; Walker, G. C.; Johnson, A. E.; Barbara, P. F. Reference 9. Chapman, C. F.; Fee, R. S.; Maroncelli, M. J. Phys. Chem. 1990, 94, 4929.
    • (1990) J. Phys. Chem. , vol.94 , pp. 4929
    • Chapman, C.F.1    Fee, R.S.2    Maroncelli, M.3
  • 92
    • 0003397206 scopus 로고
    • Elsevier: Amsterdam
    • A complete discussion of dielectric dispersion measurements and their interpretation can be found in: Böttcher, C. J. F.; Bordewijk, P. Theory of Electric Polarization; Elsevier: Amsterdam, 1978; Vol. II.
    • (1978) Theory of Electric Polarization , vol.2
    • Böttcher, C.J.F.1    Bordewijk, P.2
  • 96
    • 85033067797 scopus 로고    scopus 로고
    • note
    • We note that in the cases of tetrazine and dimethyltetrazine, where the solvation dynamics being observed appears to be mainly related to dispersion interactions, the dynamics of solvation has also been modeled using a continuum solvent approach (ref 45a). Rather than focusing on dielectric behavior, the model instead treats the solvent as an elastic continuum and relates the observable dynamics to relaxation of shear waves in the fluid.
  • 97
    • 33645727464 scopus 로고
    • A number of these theories have been reviewed by Maroncelli (ref 42) and by Raineri et al. (Raineri, F. O.; Zhou, Y.; Friedman, H. L. Chem. Phys. 1991, 152, 201).
    • (1991) Chem. Phys. , vol.152 , pp. 201
    • Raineri, F.O.1    Zhou, Y.2    Friedman, H.L.3
  • 98
    • 85033071374 scopus 로고    scopus 로고
    • Private communications
    • Raineri, F. O. Private communications.
    • Raineri, F.O.1
  • 99
    • 85033048533 scopus 로고    scopus 로고
    • note
    • 2 because of the long-wavelength nature of bulk dielectric measurements.
  • 100
    • 36449009336 scopus 로고
    • Some of the more recent simulation studies are: (a) Olender, R.; Nitzan, A. J. Chem. Phys. 1995, 102, 7180.
    • (1995) J. Chem. Phys. , vol.102 , pp. 7180
    • Olender, R.1    Nitzan, A.2
  • 103
    • 85033063385 scopus 로고    scopus 로고
    • Muino, P. L.; Callis, P. R. Reference 23
    • (d) Muino, P. L.; Callis, P. R. Reference 23.
  • 105
    • 85033036184 scopus 로고    scopus 로고
    • note
    • More sophisticated modeling has been performed in which the electronic structure of the solute has been allowed to equilibrate in response to the solvent. For example, refs 61b and 61d have considered the behavior of a solute whose charge distribution reacts to the state of the classical solvent via a quantum mechanical polarizability (see also ref 52a for a classical analog). The dynamics observed with these quantum-mechanical solutes are not substantially different from the behavior observed with classical solutes. (See also the discussion of electron solvation and refs 75 and 77.)
  • 113
    • 85033069731 scopus 로고    scopus 로고
    • note
    • Photon echo measurements (Joo, T.; Jia, Y.; Fleming, G. R. Reference 10) do appear to have sufficient resolution to detect the Gaussian character of the initial solvation response in some solvents.
  • 118
    • 0000336831 scopus 로고
    • For example: Reference 63c and Neria, E.; Nitzan, A. J. Chem. Phys. 1992, 96, 5433 deliberately used various sorts of artificial constraints in order to demonstrate that rotational motion is the dominant relaxation mechanism.
    • (1992) J. Chem. Phys. , vol.96 , pp. 5433
    • Neria, E.1    Nitzan, A.2
  • 121
    • 33750113793 scopus 로고
    • Cho, M.; Rosenthal, S. J.; Scherer, N. F.; Ziegler, L. D.; Fleming, G. R. Reference 22
    • The possibility of getting at spectral densities directly through experimental means has been explored in a number of papers: Cho, M.; Rosenthal, S. J.; Scherer, N. F.; Ziegler, L. D.; Fleming, G. R. Reference 22. Vöhring, P.; Arnett, D. C.; Westervelt, R. A.; Feldstein, M. J.; Scherer, N. F. J. Chem. Phys. 1995, 102, 4027.
    • (1995) J. Chem. Phys. , vol.102 , pp. 4027
    • Vöhring, P.1    Arnett, D.C.2    Westervelt, R.A.3    Feldstein, M.J.4    Scherer, N.F.5
  • 123
    • 85033062486 scopus 로고    scopus 로고
    • note
    • Perhaps the way to envision these possibilities is to imagine conducting a series of experiments in which we successively populate different excited electronic states of the solute, thereby allowing us to switch between various different interactions with the solvent.
  • 130
    • 85033070379 scopus 로고    scopus 로고
    • Personal communications
    • Rossky, P. J. Personal communications.
    • Rossky, P.J.1
  • 135
    • 33750099221 scopus 로고
    • Miller, W. H., Ed.; Plenum: New York
    • For a discussion of some of the issues involved in gas-phase vibrational energy transfer, see: Shin, H. K. In Dynamics of Molecular Collisions, Part A; Miller, W. H., Ed.; Plenum: New York, 1976.
    • (1976) Dynamics of Molecular Collisions , Issue.PART A
    • Shin, H.K.1
  • 144
    • 36749110649 scopus 로고
    • 2 were pointed mainly at providing an experimental look at the role of solvent cages in solution-phase chemical reactions, but it soon became clear that these experiments were actually intriguing case studies in vibrational relaxation. Nesbitt, D. J.; Hynes, J. T. J. Chem. Phys. 1982, 76, 6002.
    • (1982) J. Chem. Phys. , vol.76 , pp. 6002
    • Nesbitt, D.J.1    Hynes, J.T.2
  • 149
    • 0000530666 scopus 로고
    • There is yet other evidence that solvent energy reservoirs have some fairly well-defined preferences with regard to the amounts of energy they care to transfer. Vibration-to-vibration energy transfer between small molecules in liquids has been compared carefully with the equivalent transfer in gases. The results display a pronounced dependence on the frequency mismatch between the molecules, the shape of which is suggestive of a spectrum of liquid modes capable of making up the energy difference. See, for example: Andrew, J. J.; McDermott, D. C.; Mills, S. P.; Simpson, C. J. S. M. Chem. Phys. 1991, 153, 247.
    • (1991) Chem. Phys. , vol.153 , pp. 247
    • Andrew, J.J.1    McDermott, D.C.2    Mills, S.P.3    Simpson, C.J.S.M.4
  • 155
  • 158
    • 0003771439 scopus 로고
    • World Scientific: Philadelphia, Chapter 24
    • An especially physical description of echo experiments is given by: Ma, S.-K. Statistical Mechanics; World Scientific: Philadelphia, 1985; Chapter 24.
    • (1985) Statistical Mechanics
    • Ma, S.-K.1
  • 159
    • 0003682127 scopus 로고
    • Wiley: New York
    • See also: Mayer, J. E.; Mayer, M. G. Statistical Mechanics, 2nd ed.; Wiley: New York, 1977; pp 133-137. The reader may be amused to note this latter (classic) text's prediction that "it is very likely . . . that similar echo effects will remain pretty well limited to nuclear spin systems."
    • (1977) Statistical Mechanics, 2nd Ed. , pp. 133-137
    • Mayer, J.E.1    Mayer, M.G.2
  • 162
    • 0000681168 scopus 로고
    • For harmonic vibrations these equations can be derived quite rigorously by projection operator techniques: Zwanzig, R. Lect. Theor. Phys. 1961, 3, 106.
    • (1961) Lect. Theor. Phys. , vol.3 , pp. 106
    • Zwanzig, R.1
  • 163
    • 0000514837 scopus 로고
    • Mori, H. Prog. Theor. Phys. 1965, 33, 423. The purely formal expressions that result are rarely used in their exact form, however; while there is a set of rules for how the necessary projection operators work, there is no explicit microscopic prescription for constructing them.
    • (1965) Prog. Theor. Phys. , vol.33 , pp. 423
    • Mori, H.1
  • 164
    • 0000409547 scopus 로고
    • When the friction is approximated by its equivalent on a rigid bond, this result is the just the Landau-Teller theory for vibrational relaxation, though the rigid-bond version can be regarded more generally as direct consequence of low-order perturbation theory: Oxtoby, D. W. Adv. Chem. Phys. 1981, 47, 487. For a derivation from the generalized Langevin equation not assuming rigid bonds, see ref 24. Simulation evidence for how well these expressions do is presented in refs 24 and 85.
    • (1981) Adv. Chem. Phys. , vol.47 , pp. 487
    • Oxtoby, D.W.1
  • 169
    • 36549092405 scopus 로고
    • Berne, B. J.; Tuckerman, M. E.; Straub, J. E.; Bug, A. L. R. Reference 34
    • Bergsma, J. P.; Reimers, J. R.; Wilson, K. R.; Hynes, J. T. J. Chem. Phys. 1986, 85, 5625. Berne, B. J.; Tuckerman, M. E.; Straub, J. E.; Bug, A. L. R. Reference 34.
    • (1986) J. Chem. Phys. , vol.85 , pp. 5625
    • Bergsma, J.P.1    Reimers, J.R.2    Wilson, K.R.3    Hynes, J.T.4
  • 177
    • 85033056557 scopus 로고    scopus 로고
    • note
    • A spectrum of couplings J(ω) irreversibly combines two different kinds of information - time scale information (a set of frequencies) and liquid-structure information (a coupling constant for each frequency) - into a single, aggregate function. Thus, even if there is some genuinely fundamental set of frequencies for a liquid, each new experiment conducted on the liquid will still have its own set of coupling constants and therefore its own spectrum of couplings. Unfortunately, without any molecular information as to what goes into the coupling constants, such J(ω)'s cannot possibly tell us what the fundamental spectrum is.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.