-
1
-
-
0014705867
-
Transport equations for electrons in two-valley semiconductors
-
K. BLØTEKJÆR, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron. Devices, 17 (1970), pp. 38-47.
-
(1970)
IEEE Trans. Electron. Devices
, vol.17
, pp. 38-47
-
-
Bløtekjær, K.1
-
2
-
-
0032674952
-
The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors
-
I. GASSER AND R. NATALINI, The energy transport and the drift diffusion equations as relaxation limits of the hydrodynamic model for semiconductors, Quart. Appl. Math., 57 (1999), pp. 269-282.
-
(1999)
Quart. Appl. Math.
, vol.57
, pp. 269-282
-
-
Gasser, I.1
Natalini, R.2
-
3
-
-
0000262601
-
The relaxation of the hydrodynamical model for semiconductors to the drift-diffusion equations
-
L. HSIAO AND K. ZHANG, The relaxation of the hydrodynamical model for semiconductors to the drift-diffusion equations, J. Differential Equations, 165 (2000), pp. 315-354.
-
(2000)
J. Differential Equations
, vol.165
, pp. 315-354
-
-
Hsiao, L.1
Zhang, K.2
-
4
-
-
0034368191
-
The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamical model for semiconductors
-
L. HSIAO AND K. ZHANG, The global weak solution and relaxation limits of the initial-boundary value problem to the bipolar hydrodynamical model for semiconductors, Math. Models Methods Appl. Sci., 10 (2000), pp. 1333-1361.
-
(2000)
Math. Models Methods Appl. Sci.
, vol.10
, pp. 1333-1361
-
-
Hsiao, L.1
Zhang, K.2
-
6
-
-
0033475119
-
A hierarchy of hydrodynamic models for plasmas zero-relaxation-time limits
-
A. JÜNGEL AND Y.-J. PENG, A hierarchy of hydrodynamic models for plasmas zero-relaxation-time limits, Comm. Partial Differential Equations, 24 (1999), pp. 1007-1033.
-
(1999)
Comm. Partial Differential Equations
, vol.24
, pp. 1007-1033
-
-
Jüngel, A.1
Peng, Y.-J.2
-
7
-
-
84980156074
-
Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids
-
S. KLAINERMAN AND A. MAJDA, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math., 34 (1981), pp. 481-524.
-
(1981)
Comm. Pure Appl. Math.
, vol.34
, pp. 481-524
-
-
Klainerman, S.1
Majda, A.2
-
8
-
-
0034402477
-
On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit
-
C. LATTANZIO, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit, Math. Models Methods Appl. Sci., 10 (2000), pp. 351-360.
-
(2000)
Math. Models Methods Appl. Sci.
, vol.10
, pp. 351-360
-
-
Lattanzio, C.1
-
9
-
-
0033481448
-
The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors
-
C. LATTANZIO AND P. MARCATI, The relaxation to the drift-diffusion system for the 3-D isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems, 5 (1999), pp. 449-455.
-
(1999)
Discrete Contin. Dynam. Systems
, vol.5
, pp. 449-455
-
-
Lattanzio, C.1
Marcati, P.2
-
10
-
-
0012938830
-
Hyperbolic-parabolic singular limits for first-order nonlinear systems
-
C. LATTANZIO AND W.-A. YONG, Hyperbolic-parabolic singular limits for first-order nonlinear systems, Comm. Partial Differential Equations, 26 (2001), pp. 939-964.
-
(2001)
Comm. Partial Differential Equations
, vol.26
, pp. 939-964
-
-
Lattanzio, C.1
Yong, W.-A.2
-
11
-
-
0000067332
-
Large time behavior of the solutions to a hydrodynamic model for semiconductors
-
T. LUO, R. NATALINI, AND Z. XIN, Large time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), pp. 810-830.
-
(1998)
SIAM J. Appl. Math.
, vol.59
, pp. 810-830
-
-
Luo, T.1
Natalini, R.2
Xin, Z.3
-
13
-
-
0000039797
-
The one-dimensional Darcy's law as the limit of a compressible Euler flow
-
P. MARCATI AND A. MILANI, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differential Equations, 84 (1990), pp. 129-147.
-
(1990)
J. Differential Equations
, vol.84
, pp. 129-147
-
-
Marcati, P.1
Milani, A.2
-
14
-
-
21844490167
-
Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation
-
P. MARCATI AND R. NATALINI, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation, Arch. Ration. Mech. Anal., 129 (1995), pp. 129-145.
-
(1995)
Arch. Ration. Mech. Anal.
, vol.129
, pp. 129-145
-
-
Marcati, P.1
Natalini, R.2
-
15
-
-
0034629684
-
Hyperbolic to parabolic relaxation theory for quasilinear first order systems
-
P. MARCATI AND B. RUBINO, Hyperbolic to parabolic relaxation theory for quasilinear first order systems, J. Differential Equations, 162 (2000), pp. 359-399.
-
(2000)
J. Differential Equations
, vol.162
, pp. 359-399
-
-
Marcati, P.1
Rubino, B.2
-
16
-
-
0003435706
-
-
Springer-Verlag, Vienna
-
P. A. MARKOWICH, C. RINGHOFER, AND C. SCHMEISER, Semiconductor Equations, Springer-Verlag, Vienna, 1990.
-
(1990)
Semiconductor Equations
-
-
Markowich, P.A.1
Ringhofer, C.2
Schmeiser, C.3
-
17
-
-
0030584304
-
The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations
-
R. NATALINI, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equations, J. Math. Anal. Appl., 198 (1996), pp. 262-281.
-
(1996)
J. Math. Anal. Appl.
, vol.198
, pp. 262-281
-
-
Natalini, R.1
-
18
-
-
84974753119
-
Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers
-
F. POUPAUD, Diffusion approximation of the linear semiconductor Boltzmann equation: Analysis of boundary layers, Asymptotic Anal., 4 (1991), pp. 293-317.
-
(1991)
Asymptotic Anal.
, vol.4
, pp. 293-317
-
-
Poupaud, F.1
-
19
-
-
84944483089
-
Theory of flow of electrons and holes in germanium and other semiconductors
-
W. VAN ROOSBROECK, Theory of flow of electrons and holes in germanium and other semiconductors, Bell System Tech. J., 29 (1950), pp. 560-607.
-
(1950)
Bell System Tech. J.
, vol.29
, pp. 560-607
-
-
Van Roosbroeck, W.1
-
20
-
-
0033542203
-
Singular perturbations of first-order hyperbolic systems with stiff source terms
-
W.-A. YONG, Singular perturbations of first-order hyperbolic systems with stiff source terms, J. Differential Equations, 155 (1999), pp. 89-132.
-
(1999)
J. Differential Equations
, vol.155
, pp. 89-132
-
-
Yong, W.-A.1
-
21
-
-
0141638971
-
Basic aspects of hyperbolic relaxation systems
-
Advances in the Theory of Shock Waves, H. Freistühler and A. Szepessy, eds., Birkhäuser Boston, Boston
-
W.-A. YONG, Basic aspects of hyperbolic relaxation systems, in Advances in the Theory of Shock Waves, H. Freistühler and A. Szepessy, eds., Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser Boston, Boston, 2001, pp. 259-305.
-
(2001)
Progr. Nonlinear Differential Equations Appl.
, vol.47
, pp. 259-305
-
-
Yong, W.-A.1
|