메뉴 건너뛰기




Volumn , Issue , 2013, Pages 138-146

nEmesis: Which Restaurants Should You Avoid Today?

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DISEASES;

EID: 85167422397     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (45)

References (40)
  • 2
    • 78649842272 scopus 로고    scopus 로고
    • Predicting the future with social media
    • IEEE
    • Asur, S., and Huberman, B. 2010. Predicting the future with social media. In WI-IAT, volume 1, 492–499. IEEE.
    • (2010) WI-IAT , vol.1 , pp. 492-499
    • Asur, S.1    Huberman, B.2
  • 3
    • 77956208411 scopus 로고    scopus 로고
    • Why label when you can search?: Alternatives to active learning for applying human resources to build classification models under extreme class imbalance
    • ACM
    • Attenberg, J., and Provost, F. 2010. Why label when you can search?: Alternatives to active learning for applying human resources to build classification models under extreme class imbalance. In SIGKDD, 423–432. ACM.
    • (2010) SIGKDD , pp. 423-432
    • Attenberg, J.1    Provost, F.2
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla, N.; Japkowicz, N.; and Kotcz, A. 2004. Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter 6(1):1–6.
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.1    Japkowicz, N.2    Kotcz, A.3
  • 9
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving generalization with active learning. Machine Learning 15(2):201–221.
    • (1994) Machine Learning , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 10
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine learning 20(3):273–297.
    • (1995) Machine learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 13
    • 84876523071 scopus 로고    scopus 로고
    • U.S. Food and Drug Administration, 2nd edition
    • FDA. 2012. Bad Bug Book. U.S. Food and Drug Administration, 2nd edition.
    • (2012) Bad Bug Book
  • 14
    • 60549098239 scopus 로고    scopus 로고
    • Detecting influenza epidemics using search engine query data
    • Ginsberg, J.; Mohebbi, M.; Patel, R.; Brammer, L.; Smolinski, M.; and Brilliant, L. 2008. Detecting influenza epidemics using search engine query data. Nature 457(7232):1012–1014.
    • (2008) Nature , vol.457 , Issue.7232 , pp. 1012-1014
    • Ginsberg, J.1    Mohebbi, M.2    Patel, R.3    Brammer, L.4    Smolinski, M.5    Brilliant, L.6
  • 15
    • 80053345545 scopus 로고    scopus 로고
    • Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures
    • Golder, S., and Macy, M. 2011. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333(6051):1878–1881.
    • (2011) Science , vol.333 , Issue.6051 , pp. 1878-1881
    • Golder, S.1    Macy, M.2
  • 17
    • 2242481419 scopus 로고    scopus 로고
    • Learning from imbalanced data sets: a comparison of various strategies
    • Japkowicz, N., et al. 2000. Learning from imbalanced data sets: a comparison of various strategies. In AAAI workshop on learning from imbalanced data sets, volume 68.
    • (2000) AAAI workshop on learning from imbalanced data sets , vol.68
    • Japkowicz, N.1
  • 18
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • ACM
    • Joachims, T. 2005. A support vector method for multivariate performance measures. In ICML 2005, 377–384. ACM.
    • (2005) ICML 2005 , pp. 377-384
    • Joachims, T.1
  • 23
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis, J. R., and Koch, G. G. 1977. The measurement of observer agreement for categorical data. biometrics 159–174.
    • (1977) biometrics , pp. 159-174
    • Landis, J. R.1    Koch, G. G.2
  • 26
    • 82655180226 scopus 로고    scopus 로고
    • Conducting behavioral research on amazons mechanical turk
    • Mason, W., and Suri, S. 2012. Conducting behavioral research on amazons mechanical turk. Behavior research methods 44(1):1–23.
    • (2012) Behavior research methods , vol.44 , Issue.1 , pp. 1-23
    • Mason, W.1    Suri, S.2
  • 32
    • 84855432040 scopus 로고    scopus 로고
    • Economic burden from health losses due to foodborne illness in the United States
    • Scharff, R. L. 2012. Economic burden from health losses due to foodborne illness in the United States. Journal of food protection 75(1):123–131.
    • (2012) Journal of food protection , vol.75 , Issue.1 , pp. 123-131
    • Scharff, R. L.1
  • 35
    • 84858186316 scopus 로고    scopus 로고
    • Generalized task markets for human and machine computation
    • Shahaf, D., and Horvitz, E. 2010. Generalized task markets for human and machine computation. AAAI.
    • (2010) AAAI
    • Shahaf, D.1    Horvitz, E.2
  • 37
    • 79955757514 scopus 로고    scopus 로고
    • The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic
    • Signorini, A.; Segre, A.; and Polgreen, P. 2011. The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS One 6(5).
    • (2011) PLoS One , vol.6 , Issue.5
    • Signorini, A.1    Segre, A.2    Polgreen, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.