메뉴 건너뛰기




Volumn , Issue , 2010, Pages 423-432

Why label when you can search? Alternatives to active learning for applying human resources to build classification models under extreme class imbalance

Author keywords

Active learning; Class imbalance; Human resources; Machine learning; Micro outsourcing; On line advertising

Indexed keywords

ACTIVE LEARNING; CLASS IMBALANCE; HUMAN RESOURCES; MACHINE-LEARNING; MICRO-OUTSOURCING; ONLINE ADVERTISING;

EID: 77956208411     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835859     Document Type: Conference Paper
Times cited : (86)

References (32)
  • 1
    • 77956208966 scopus 로고    scopus 로고
    • http://www.dmoz.org/.
  • 2
    • 77956213035 scopus 로고    scopus 로고
    • https://www.mturk.com/mturk/welcome.
  • 3
    • 77956194726 scopus 로고    scopus 로고
    • New York, NY, USA, January. AdSafe Media, Inc.
    • Content category definitions & rating guidelines. New York, NY, USA, January. AdSafe Media, Inc. http://www.adsafemedia.com/adsafe-rating-guide.php.
    • Content Category Definitions & Rating Guidelines
  • 6
    • 77956204748 scopus 로고    scopus 로고
    • Toward optimal allocation of human resources for active learning with application to safe advertising
    • J. Atteberg and F. Provost. Toward optimal allocation of human resources for active learning with application to safe advertising. In Winter Conf. on Business Intel., 2010.
    • (2010) Winter Conf. on Business Intel.
    • Atteberg, J.1    Provost, F.2
  • 7
    • 77956223402 scopus 로고    scopus 로고
    • Toward optimal allocation of human resources for active learning with application to safe on-line advertising
    • J. Attenberg and F. Provost. Toward optimal allocation of human resources for active learning with application to safe on-line advertising. Stern working paper ceder-09-07, 2009.
    • (2009) Stern Working Paper Ceder-09-07
    • Attenberg, J.1    Provost, F.2
  • 8
    • 85059361118 scopus 로고    scopus 로고
    • Taking into account the differences between actively and passively acquired data: The case of active learning with support vector machines for imbalanced datasets
    • M. Bloodgood and K. V. Shanker. Taking into account the differences between actively and passively acquired data: the case of active learning with support vector machines for imbalanced datasets. In NAACL '09, 2009.
    • (2009) NAACL '09
    • Bloodgood, M.1    Shanker, K.V.2
  • 14
    • 0345438685 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for data mining researchers
    • T. Fawcett. ROC graphs: Notes and practical considerations for data mining researchers. Technical report hpl-2003-4, 2003.
    • (2003) Technical Report Hpl-2003-4
    • Fawcett, T.1
  • 18
    • 70350630557 scopus 로고    scopus 로고
    • Beyond blacklists: Learning to detect malicious web sites from suspicious urls
    • J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Beyond blacklists: learning to detect malicious web sites from suspicious urls. In KDD '09, 2009.
    • (2009) KDD '09
    • Ma, J.1    Saul, L.K.2    Savage, S.3    Voelker, G.M.4
  • 21
    • 77954635318 scopus 로고    scopus 로고
    • A large-scale active learning system for topical categorization on the web
    • S. Rajan, D. Yankov, S. Gaffney, and A. Ratnaparkhi. A large-scale active learning system for topical categorization on the web. In WWW, 2010.
    • (2010) WWW
    • Rajan, S.1    Yankov, D.2    Gaffney, S.3    Ratnaparkhi, A.4
  • 22
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of Wisconsin-Madison
    • B. Settles. Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin-Madison, 2009.
    • (2009) Computer Sciences Technical Report 1648
    • Settles, B.1
  • 26
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res., 2:45-66, 2002.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 29
    • 77956198600 scopus 로고    scopus 로고
    • The impact of small disjuncts on classifier learning
    • G. M. Weiss. The impact of small disjuncts on classifier learning. In Data Mining, volume 8, pages 193-226. 2010.
    • (2010) Data Mining , vol.8 , pp. 193-226
    • Weiss, G.M.1
  • 30
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. M. Weiss and F. Provost. Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Int. Res., 19(1):315-354, 2003.
    • (2003) J. Artif. Int. Res. , vol.19 , Issue.1 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 31
    • 80053363150 scopus 로고    scopus 로고
    • Active learning for word sense disambiguation with methods for addressing the class imbalance problem
    • J. Zhu and E. Hovy. Active learning for word sense disambiguation with methods for addressing the class imbalance problem. In EMNLP-CoNLL '07.
    • EMNLP-CoNLL '07
    • Zhu, J.1    Hovy, E.2
  • 32
    • 77955008607 scopus 로고    scopus 로고
    • Active learning with sampling by uncertainty and density for word sense disambiguation and text classification
    • J. Zhu, H. Wang, T. Yao, and B. K. Tsou. Active learning with sampling by uncertainty and density for word sense disambiguation and text classification. In COLING '08, 2008.
    • (2008) COLING '08
    • Zhu, J.1    Wang, H.2    Yao, T.3    Tsou, B.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.