메뉴 건너뛰기




Volumn , Issue , 2011, Pages

Efficient inference in matrix-variate Gaussian models with iid observation noise

Author keywords

[No Author keywords available]

Indexed keywords

GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC);

EID: 85162502083     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (85)

References (19)
  • 3
    • 79960146318 scopus 로고    scopus 로고
    • Computationally efficient convolved multiple output gaussian processes
    • M.A. Alvarez and N.D. Lawrence. Computationally efficient convolved multiple output gaussian processes. Journal of Machine Learning Research, 12:1425-1466, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1425-1466
    • Alvarez, M.A.1    Lawrence, N.D.2
  • 9
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research, 9:485-516, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'aspremont, A.3
  • 10
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432, 2008.
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 11
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • J.T. Leek and J.D. Storey. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics, 3(9):e161, 2007.
    • (2007) PLoS Genetics , vol.3 , Issue.9
    • Leek, J.T.1    Storey, J.D.2
  • 12
    • 77955505742 scopus 로고    scopus 로고
    • A bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eqtl studies
    • O. Stegle, L. Parts, R. Durbin, and J. Winn. A bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eqtl studies. PLoS Computational Biology, 6(5):e1000770, 2010.
    • (2010) PLoS Computational Biology , vol.6 , Issue.5
    • Stegle, O.1    Parts, L.2    Durbin, R.3    Winn, J.4
  • 14
    • 78650901444 scopus 로고    scopus 로고
    • Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the dream4 challenge
    • P. Menéndez, Y.A.I. Kourmpetis, C.J.F. Ter Braak, and F.A. van Eeuwijk. Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the dream4 challenge. PLoS One, 5(12):e14147, 2010.
    • (2010) PLoS One , vol.5 , Issue.12
    • Menéndez, P.1    Kourmpetis, Y.A.I.2    Ter Braak, C.J.F.3    Van Eeuwijk, F.A.4
  • 15
    • 27844605876 scopus 로고    scopus 로고
    • Probabilistic non-linear principal component analysis with gaussian process latent variable models
    • N. Lawrence. Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1783-1816
    • Lawrence, N.1
  • 16
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • K.Y. Yeung andW.L. Ruzzo. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9):763, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 18
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • K. Sachs, O. Perez, D. Pe'er, D.A. Lauffenburger, and G.P. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):523, 2005.
    • (2005) Science , vol.308 , Issue.5721 , pp. 523
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 19
    • 43249129715 scopus 로고    scopus 로고
    • Gene-environment interaction in yeast gene expression
    • E.N. Smith and L. Kruglyak. Gene-environment interaction in yeast gene expression. PLoS Biology, 6(4):e83, 2008.
    • (2008) PLoS Biology , vol.6 , Issue.4
    • Smith, E.N.1    Kruglyak, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.