-
3
-
-
79960146318
-
Computationally efficient convolved multiple output gaussian processes
-
M.A. Alvarez and N.D. Lawrence. Computationally efficient convolved multiple output gaussian processes. Journal of Machine Learning Research, 12:1425-1466, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1425-1466
-
-
Alvarez, M.A.1
Lawrence, N.D.2
-
9
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
-
O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research, 9:485-516, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
El Ghaoui, L.2
D'aspremont, A.3
-
10
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
11
-
-
34848914038
-
Capturing heterogeneity in gene expression studies by surrogate variable analysis
-
J.T. Leek and J.D. Storey. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genetics, 3(9):e161, 2007.
-
(2007)
PLoS Genetics
, vol.3
, Issue.9
-
-
Leek, J.T.1
Storey, J.D.2
-
12
-
-
77955505742
-
A bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eqtl studies
-
O. Stegle, L. Parts, R. Durbin, and J. Winn. A bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eqtl studies. PLoS Computational Biology, 6(5):e1000770, 2010.
-
(2010)
PLoS Computational Biology
, vol.6
, Issue.5
-
-
Stegle, O.1
Parts, L.2
Durbin, R.3
Winn, J.4
-
13
-
-
80053372166
-
FaST linear mixed models for genome-wide association studies
-
C. Lippert, J. Listgarten, Y. Liu, C.M. Kadie, R.I. Davidson, and D. Heckerman. FaST linear mixed models for genome-wide association studies. Nature Methods, 8:833-835, 2011.
-
(2011)
Nature Methods
, vol.8
, pp. 833-835
-
-
Lippert, C.1
Listgarten, J.2
Liu, Y.3
Kadie, C.M.4
Davidson, R.I.5
Heckerman, D.6
-
14
-
-
78650901444
-
Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the dream4 challenge
-
P. Menéndez, Y.A.I. Kourmpetis, C.J.F. Ter Braak, and F.A. van Eeuwijk. Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the dream4 challenge. PLoS One, 5(12):e14147, 2010.
-
(2010)
PLoS One
, vol.5
, Issue.12
-
-
Menéndez, P.1
Kourmpetis, Y.A.I.2
Ter Braak, C.J.F.3
Van Eeuwijk, F.A.4
-
15
-
-
27844605876
-
Probabilistic non-linear principal component analysis with gaussian process latent variable models
-
N. Lawrence. Probabilistic non-linear principal component analysis with gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.1
-
16
-
-
0034800371
-
Principal component analysis for clustering gene expression data
-
K.Y. Yeung andW.L. Ruzzo. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9):763, 2001.
-
(2001)
Bioinformatics
, vol.17
, Issue.9
, pp. 763
-
-
Yeung, K.Y.1
Ruzzo, W.L.2
-
18
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
K. Sachs, O. Perez, D. Pe'er, D.A. Lauffenburger, and G.P. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721):523, 2005.
-
(2005)
Science
, vol.308
, Issue.5721
, pp. 523
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
19
-
-
43249129715
-
Gene-environment interaction in yeast gene expression
-
E.N. Smith and L. Kruglyak. Gene-environment interaction in yeast gene expression. PLoS Biology, 6(4):e83, 2008.
-
(2008)
PLoS Biology
, vol.6
, Issue.4
-
-
Smith, E.N.1
Kruglyak, L.2
|