-
1
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.C.N.3
-
3
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6, 2006.
-
(2006)
JMLR
, vol.6
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
-
5
-
-
76749161402
-
Bundle methods for regularized risk minimization
-
C. H. Teo, SVN Vishwanathan, A. Smola, and Q. V. Le. Bundle methods for regularized risk minimization. JMLR, 11, 2010.
-
(2010)
JMLR
, vol.11
-
-
Teo, C.H.1
Vishwanathan, S.V.N.2
Smola, A.3
Le, Q.V.4
-
7
-
-
78049347622
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In ICML, 2011.
-
(2011)
ICML
-
-
Dembczynski, K.1
Cheng, W.2
Hüllermeier, E.3
-
8
-
-
50149118484
-
Generalization bounds and consistency for structured labeling
-
G. Bakir, T. Hofmann, B. Schölkopf, A.J. Smola, and B. Taskar, editors. MIT Press
-
D. McAllester. Generalization bounds and consistency for structured labeling. In G. Bakir, T. Hofmann, B. Schölkopf, A.J. Smola, and B. Taskar, editors, Predicting Structured Data. MIT Press, 2007.
-
(2007)
Predicting Structured Data
-
-
McAllester, D.1
-
9
-
-
0006776658
-
An efficient algorithm for finding the M most probable configurations in probabilistic expert systems
-
D. Nilsson. An efficient algorithm for finding the M most probable configurations in probabilistic expert systems. Statistics and Computing, 8(2), 1998.
-
(1998)
Statistics and Computing
, vol.8
, Issue.2
-
-
Nilsson, D.1
-
10
-
-
33846324463
-
Finding the M most probable configurations using loopy belief propagation
-
C. Yanover and Y. Weiss. Finding the M most probable configurations using loopy belief propagation. In NIPS, 2004.
-
(2004)
NIPS
-
-
Yanover, C.1
Weiss, Y.2
-
11
-
-
78649417672
-
An LP View of the M-best MAP problem
-
M. Fromer and A. Globerson. An LP View of the M-best MAP problem. In NIPS, 2009.
-
(2009)
NIPS
-
-
Fromer, M.1
Globerson, A.2
-
12
-
-
80054894097
-
C4: Exploring multiple solutions in graphical models by cluster sampling
-
J. Porway and S.-C. Zhu. C4: Exploring multiple solutions in graphical models by cluster sampling. PAMI, 33(9), 2011.
-
(2011)
PAMI
, vol.33
, Issue.9
-
-
Porway, J.1
Zhu, S.-C.2
-
13
-
-
70350619001
-
Learning to localize objects with structured output regression
-
M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008.
-
(2008)
ECCV
-
-
Blaschko, M.B.1
Lampert, C.H.2
-
15
-
-
3042597440
-
Learning multi-label scene classification
-
M. R. Boutell, J. Luo, X. Shen, and C.M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9), 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
16
-
-
0000636553
-
Text categorization with support vector machines: Learning with many relevant features
-
T. Joachims. Text categorization with support vector machines: Learning with many relevant features. In ECML, 1998.
-
(1998)
ECML
-
-
Joachims, T.1
-
17
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization. Machine Learning, 39(2-3), 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
-
-
Schapire, R.E.1
Singer, Y.2
-
19
-
-
68949149733
-
On structured output training: Hard cases and an efficient alternative
-
T. Gärtner and S. Vembu. On structured output training: Hard cases and an efficient alternative. Machine Learning, 76(2):227-242, 2009.
-
(2009)
Machine Learning
, vol.76
, Issue.2
, pp. 227-242
-
-
Gärtner, T.1
Vembu, S.2
-
20
-
-
56449130129
-
Predicting diverse subsets using structural SVMs
-
Y. Yue and T. Joachims. Predicting diverse subsets using structural SVMs. In ICML, 2008.
-
(2008)
ICML
-
-
Yue, Y.1
Joachims, T.2
-
21
-
-
65449189832
-
Extracting shared subspaces for multi-label classification. in
-
S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspaces for multi-label classification. In ACM SIGKDD, 2008.
-
(2008)
ACM SIGKDD
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
22
-
-
77958600377
-
Multi-label prediction via sparse infinite CCA
-
P. Rai and H. Daumé III. Multi-label prediction via sparse infinite CCA. In NIPS, 2009.
-
(2009)
NIPS
-
-
Rai, P.1
Daumé III, H.2
-
24
-
-
80053440655
-
Multi-label classification on tree- and DAG-structured hierarchies
-
W. Bi and J. Kwok. Multi-label classification on tree- and DAG-structured hierarchies. In ICML, 2011.
-
(2011)
ICML
-
-
Bi, W.1
Kwok, J.2
-
26
-
-
74849083829
-
Effective and efficient multilabel classification in domains with large number of labels
-
G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification in domains with large number of labels. In ECMLPKDD, 2008.
-
(2008)
ECMLPKDD
-
-
Tsoumakas, G.1
Katakis, I.2
Vlahavas, I.3
-
27
-
-
72449124267
-
Structured prediction by joint kernel support estimation
-
C. H. Lampert and M. B. Blaschko. Structured prediction by joint kernel support estimation. Machine Learning, 77(2-3), 2009.
-
(2009)
Machine Learning
, vol.77
, Issue.2-3
-
-
Lampert, C.H.1
Blaschko, M.B.2
-
29
-
-
33745768424
-
Kernel-based learning of hierarchical multilabel classification models
-
J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Kernel-based learning of hierarchical multilabel classification models. JMLR, 7, 2006.
-
(2006)
JMLR
, vol.7
-
-
Rousu, J.1
Saunders, C.2
Szedmak, S.3
Shawe-Taylor, J.4
-
30
-
-
84860615448
-
On taxonomies for multi-class image categorization
-
A. Binder, K.-R. Müller, and M. Kawanabe. On taxonomies for multi-class image categorization. IJCV, 2011.
-
(2011)
IJCV
-
-
Binder, A.1
Müller, K.-R.2
Kawanabe, M.3
-
31
-
-
18744367558
-
Hierarchical document categorization with support vector machines
-
L. Cai and T. Hofmann. Hierarchical document categorization with support vector machines. In ICKM, 2004.
-
(2004)
ICKM
-
-
Cai, L.1
Hofmann, T.2
-
32
-
-
77956522919
-
Bayes optimal multilabel classification via probabilistic classifier chains
-
K. Dembczynski, W. Cheng, and E. Hüllermeier. Bayes optimal multilabel classification via probabilistic classifier chains. In ICML, 2010.
-
(2010)
ICML
-
-
Dembczynski, K.1
Cheng, W.2
Hüllermeier, E.3
-
33
-
-
70350621774
-
Efficient subwindow search: A branch and bound framework for object localization
-
C. H. Lampert, M. B. Blaschko, and T. Hofmann. Efficient subwindow search: A branch and bound framework for object localization. PAMI, 31(12), 2009.
-
(2009)
PAMI
, vol.31
, Issue.12
-
-
Lampert, C.H.1
Blaschko, M.B.2
Hofmann, T.3
-
34
-
-
12844249589
-
Learning to detect objects in images via a sparse, part-based representation
-
S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-based representation. PAMI, 26(11), 2004.
-
(2004)
PAMI
, vol.26
, Issue.11
-
-
Agarwal, S.1
Awan, A.2
Roth, D.3
-
35
-
-
77956009382
-
An efficient divide-and-conquer cascade for nonlinear object detection
-
C. H. Lampert. An efficient divide-and-conquer cascade for nonlinear object detection. In CVPR, 2010.
-
(2010)
CVPR
-
-
Lampert, C.H.1
|